
DOCUMENT RESUME

ED 075 251 24 SE 016 080

TITLE Illustrated Texts (Master Set) .

INSTITUTION Naval Academy, Annapolis, Md.; New York Inst. of
Tech., Old Westbury.

SPONS AGENCY Office of Education (DREW), Washington, D.C. Bureau
of ReSearch.

BUREAU NO BR-8-0446
PUB FATE 70
CONTRACT N00600-68-C-0749
NOTE 425p.

EDRS PRICE MF-$0.65 HC-$16.45
DESCRIPTORS College Science; *Electricity; Instructional

Materials; *Mechanics (Physics); Physics; Science
Education; Study Guides; *Supplementary Textbooks

IDENTIFIERS Self Paced Instruction

ABSTRACT
As one of three audiovisual media in the U. S. Naval

Academy Self-Paced Physics Course 27 topics relating to mechanics,
electricity, and magnetism are presented in this volume for enriching
and supplementary purposes. Each topic is primarily composed of
figures and formulas associated with explanatory statements. Terminal
behavioral objectives and directions for reaching subsequent study
guides are incorporated at the end of the topic. The material is
designed to optimize and individualize the student learning process.
(Related documents are SE 016 065 through SE 016 088 and ED 062 123
through ED 062 125.) (CC)



DEVELOPED AND PRODUCED UNDER THE UNITED STATES

NAVY CONTRACT #N00600-68C-07L19 AND UNITED STATES

OFFICE OF EDUCATION, BUREAU OF RESEARCH, PROJECT

#8-0446, FOR THE UNITED. STATES NAVAL ACADEMY

NEW YORK INSTITUTE OF TECHNOLOGY, OLD WESTBURY,

LONG ISLAND, NEW YORK 11568

ILLUSTRATED TEXTS

(MASTER SET)



ILLUSTRATED BOOKS

INDEX

1. PROJECTILE MOTION

2. NEWTON'S FIRST LAW

3. NEWTON'S SECOND LAW

4. NEWTON'S THIRD LAW

5. ATWOOD'S MACHINE

6. CHARACTERISTICS OF CIRCULAR MOTION

7. WORK WHEN FORCE VARIES IN BOTH MAGNITUDE & DIRECTION

8. KINETIC ENERGY

9. POTENTIAL ENERGY

10. CONSERVATION OF ENERGY

10a. MOVEMENT OF CENTER OF MASS

11. CONSERVATION OF MOMENTUM.

12. IMPULSE AND MOMENTUM

13. COLLISIONS

14. GRAVITATION

15. CALCULATION OF E AN INFINITE UNIFORMLY CHARGED WIRE

16. DEFLECTION OF ELECTRONS IN AN ELECTRIC FIELD

17. FLUX

18. CALCULATION OF E. USING GAUSS' LAW

19. CAPACITORS

19a. THE CAPACITOR IN ACTION

20. KIRCHHOFF'S RULES

21. DEFINITION OF "B" Field



24. FORCE BETWEEN PARALLEL CURRENT-CARRYING CONDUCTORS

23. AMPERE'S LAW APPLIED TO A LONG STRAIGHT CONDUCTOR

25. THE LAW OF BIOT-SAVART

26. FARADAY'S LAW OF INDUCTION

22. MOTION OF AN ELECTRON IN COMBINED E AND B FIELDS

28. L - R TRANSIENTS

27. R - C TRANSIENTS
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Man's slow and tortuous climb out of the primeval ooze probably

began with the invention of the club, but his progress was

unquestionably accelerated when he learned to throw stones with

some degree of accuracy. Today he is still throwing things.

The only difference between modern man and his very early

ancestors in this respect is that the things being thrown today

are considerably more lethal than stones and that he no longer

uses his arm muscles to throw them!

As early as the 16th century, much attention was already being

given to accuracy of "throwing". For example, as shown in

Figure 1, artillerymen were beginning to apply some mathematics

to the aiming of their cannon. In this illustration, the

cannoneer is being taught how to use a quadrant to help him

achieve the desired trajectory by selecting the proper angle of

elevation for the cannon.

Of course, we can do a lot better_today. We understand projectile

motion; we know how to apply mathematics to the motion so that we

can predict how the projectile will move, how high it will rise

in the air, and how far down-range it will go.
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An understanding of projectile motion must start with fundamentals

(Figure 2). A gun is placed so that its muzzle makes an angle 9

with the ground considered here to be perfectly horizontal. The

projectile is fired so that it leaves the muzzle with an initial

velocity v. Its subsequent motion will depend to a great extent

on the length of time it will remain in the air before returning

to the ground, hence this is the first consideration to be worked

out.

To calculate the total time of flight, it is first necessary to

determine the time needed for the projectile to reach the

highest point in its flight. This approach requires that the

initial velocity v at an angle 9 to the ground be resolved into

its horizontal and vertical components, v
x

and v respectively.
y

(Figure 3).

The horizontal component v
x
is trigonometrically related to the

initial velocity v by the cosine of angle 9. Hence, v
x

v cos 9.

Similarly, v = v sin 9. Refer now to Figure 4.
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The real motion of the projectile consists of a vertical and

horizontal component, but it will be shown that these two

motions are completely independent of one another. The fact

that the projectile is moving horizontally at the same time

that it is rising or falling does not affect the rise or

fall time. This means that the rise time may be calculated

by considering the vertical motion only as in Figure 5. The

final velocity v attained by a body moving in a gravitational

field is given by the expression v = v - gt where v is the
yy

vertical component of the initial velocity, j is the accelera-

tion due to gravity, and t is the time required for the body

to reach the velocity v. When a rising projectile reaches the

highest point of its flight, it must stop moving upward just

before it begins its descent, hence the final velocity at the

top of the flight is zero. Substituting zero for v in the

equation yields finally the expression given for the time t

to the highest point.

Since the projectile is acted upon by the same accelerating

force on its way down as it was subjected to on its way up,

the time for return may be shown to be exactly the same as

the time of rise. Refer to Figure 6. From this it can be

seen that the total time of flight is simply twice the rise

time.
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Figure 7 also provides an expression for finding the range R of a projectile.

The range is defined as the horizontal distance from the cannon to the point

where the projectile returns to earth. The range equation is obtained in

this way: once the projectile leaves the muzz12, the only force acting on

it is the gravitational force provided that we ignore frictional retardation

due to air resistance. The gravitational force is wholly vertical; it has

no horizontal component. As you will discover later when you study the laws

of motion, an object on which no unbalanced force acts neither accelerates

nor decelerates. In this case, the absence of an unbalanced horizontal

force seems to imply that the horizontal component of the projectile's

velocity will be constant. This remains to be seen but it is a justifiable

preliminary assumption. Making this assumption, then, it can immediately

be said that the distance (range) covered by the projectile is simply:

R = vx t

in which R = range, vx = constant horizontal velocity, and t = total time

of flight. It is already known, however, that:

v
x
= v cos

2 v sin
g

and t =

Substituting these identities for the terms in the first equation yields

the range equation in Figure 7.

When the range equation is simplified it appears as in Figure 8. This

figure presents the two key equations developed thus far in final form. At

this point, the student should do a unit check on both expressions to be

sure that he sees that, in MKS units, t will come out in seconds and R in

meters,
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It was mentioned above that the absence of an unbalanced

horizontal force implies that the horizontal velocity will

be constant. This is sometimes demonstrated with the aid

of a spring gun (Figure 9) which fires a spherical projectile

through the air. A coordinate grid may be used as a back

ground for observing the trajectory (Figure 10).

There are several ways to observe the trajectory so that

measurements can be made to confirm the constancy of vx

among other things.
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A high-speed motion picture camera may be used to film the actual

flight of the ball and then may be played back in slow motion, or

a Polaroid type of camen- ay be used to produce a composite print

if the source of phot, light is a high-intensity stroboscope

set for rapid, repetl'ivp Ing. Either of these methods presents

a final picture such as that given in Figure 11.

Note first that the vertical displacement for equal time intervals

constantly changes indicating that the vertical velocity is not
uniform. Then observe that the horizontal displacements in each

unit of time are the same showing that v
x is constant. The right-

left symmetry of the trajectory curve also serves to show that

the horizontal motion is uniform; if the projectile were slowing
down -- an effect one might expect if a horizontal retarding

force were acting on it -- the right-hand portion of the trajectory

curve would reveal this in the form of a steepening slope for each
unit of time.

It is a matter of interest that the ideal trajectory curve is a

parabola that follows the equation:

y= ax - bx
2

in which y is the vertical height at any time as a function of the

horizontal position x, and a and b are constants whose values

depend on the angleof elevation of the gun, the initial velocity

of the projectile, and the value of the gravitational acceleration

constant I at that particular location.
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There is another interesting experiment that may be performed in

the classroom. This one is used to demonstrate another important

aspect of projectile motion. Refer to Figure 12. Shown here is

a "trick" projectile consisting of two halves of exactly equal

mass; when assembled, the two parts are held together by a

short string which neutralizes the tendency of the internal

spring to make the projectile "explode". A carefully timed fuse

is set to b.ow the projectile apart at or near midflight.

Suppose, as indicated in Figure 13, the explosion is timed to

occur exactly at midflight when the projectile's axis is

horizontal. A short time afterward, the two equal-mass fragments

would have movedavart to the positions shown in Figure 14. The

fragment on the risht has gained some additional speed as a .

result of the Thiosion while the one on the left lost some speed.

The former h.L; flattened its trajectory and the latter shows a

steeper trajectory, both the result of the simultaneous changes

in speed. But a point of special interest emerges from a study

of the positioos of the fragments: the midpolet of the line

connecting tilt:. centers of the two fragments lies on the original

trajectory curve.
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Now refer to Figure 15 which depicts the fragment positions a

little later in time. The trajectories continue to move apart

but the center of the connecting line still rests on the

original curve.

This action continues right up until the instant of impact of

both fragments with the ground, as shown in Figure 16.

Exactly what is the significance of this consistent behavior

of the fragments? It points out a very significant phenomenon:

the center of mass of the two-fragment system follows the

trajectory that the whole projectile would have taken had there

been no explosion.

The demonstration described above has two "special-case"

aspects: first, the explosion occurred exactly in the middle

of the trajectory; second, the axis of the projectile was

perfectly horizontal, insuring that no vertical forces would act

on it during the explosion. To prove that the motion of the

center of mass of the equal fragments would follow exactly the

same path for all other conceivable variations requires an

understanding of the concepts of momentum and conservation

principles. The fact that this does indeed occur is easily

shown by experiment but the mathematical proof must be left for

a later date.

#1-8
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PROJECTILE
MOTION

TERMINAL OBJECTIVES

2/3 B Analyze the trajectory curve of a particle projected

horizontally (no vertical component) from the top of

a structure.

2/3 E Solve position, time velocity, and range -problems

involving projectiles with any angle of 4wpartmtre.

Please turn to page 27A of your STUDY GUIDE

to continue with your work.





Aristotelian philosophy held that a material object was in its "natural"
state only if it was at rest. If there is no force acting on a body in
motion to maintain the state of motion, then the body must come to rest
to return to its "natural" state. When one considers that most simple
observations made during the normal course of a day seem to bear out this
conclusion, one must concede that the assumption appears reasonable. If
a massive object such as a well-stocked bookcase were suddenly to rise in
the air of its own volition, even a modern observer would consider the
action "unnatural" or, more probably, supernatural! If a body at rest does
not begin to move unless it is somehow influenced by an external agency, it
would appear logical to assume that a moving object would come to rest of
its own accord if the agency that caused it to move initially were to be
removed. And, indeed, C.lis is precisely what happened in the basic experi-
ments performed by the ancient philosophers. If a book is hold-propelled
along a table top and if the hand is then removed, the book comes to rest
almost immediately.

The basic fallacy in this reasoning is that one tends to ignore certain
external agencies which do not overtly make themselves evident to the
senses. When these hi .en factors are searched out, exposed, and accounted
for -- the "natural" state of things becomes a myth. As a steam locomotive
drawing a train of cars stoutly puffs and snorts, it certainly appears as
though the force exerted by the engine on the wheels is needed to keep the

r train moving at a constant speed. But there are "hidden" forces acting on
the train. One of these is illustrated in Figure 1. It is the retarding
force offered to the motion of the locomotive by the air itself. At any
reasonable speed, the locomotive must push its way through the enveloping
atmosphere and as it does so, must thrust the air out of its path. The air
returns the thrust in the form of an opposing force which, at high speeds,
becomes quite large.

A second opposing force takes the form shown in Figure 2. There is friction
between the axle bearings and the wheels; there is friction between the
wheels and the track despite the rolling action. Thus friction is the
second retarding force that must be overcome if the train is to move.

#2- 1
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Careful measurement of the pull of the locomotive engine

and the magnitudes of the two retarding forces just

described discloses that the sum of the opposing forces

is equal to the force exerted by the engine on the wheels.

This is graphically illustrated in Figure 3. Note that

the engine thrust is directed oppositely to the sum of

the retarding forces. Hence, the net or unbalanced

force acting on the train is zero. This leads to the

conclusion that the train will continue to move with

unchanging speed as long as there is no unbalanced force

exerted on it. Thus, it is apparent that the ancient

belief regarding the naturalness of the rest state is

incorrect. A state of uniform motion -- unchanging

velocity along a straight path -- is just as natural.
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Although the Italian scientist Galileo recognized the error of the ancient
logic and proposed a number of "thought" experiments to show that the con-
clusions derived therefrom were untenable, it was Isaac Newton who formalized
the generalization which correctly links these concepts. In his Principia,
a written work that still' is regarded by many as one of the most outstanding
scientific documents of all time, he states (in Latin) that "every body
continues in its state of rest, or of uniform motion in a straight line
unless it is compelled to change that state for forcPq impressed on it."
This statement, in somewhat more modern garb, is presented in Figure 4.

You have probably seen some of the films taken inside space vehicles by U.S.
astronauts on their way to or from the moon. In these views, you have been
treated to experiences that the ancients could not possibly have enjoyed.
A wrench remains floating in the cabin when the astronaut removes his hand.
From the point of view of the astronaut -- as seen by his camera -- the
wrench is at rest. The outside observer, however, is aware that this is
not true from his viewpoint; he sees the wrench moving with uniform speed,
keeping pace with the vehicle as it progresses along a straight line between
the earth and the moon. Particularly when the vehicle reaches the gravity-
null point between the two bodies, where gravitational effects may be com-
pletely ignored, the wrench is a body on which the net or unbalanced force
is really zero yet it continues to move with unchanging velocity.

A number of important implications of the first law are given in the figures
that follow. The statement in Figure 5 also implies that zero resultant
force is the equivalent of no force at all.

Figure 6 defines by implication the so-called inertial frame of reference.
The floating wrench appears stationary to the astronaut but appears to be
moving with uniform ,Telocity as seen by the outside observer. 'This means
that the concepts of "absolute" motion and "absolute" rest are quite
meaningless. All motion is relative; motion can be defined only by
referring to a preselected set of coordinates.

Newton's First Law embodies the true concept of a "force". Refer to
Figure 7. Forces do not give rise to or maintain uniform motion; they

bring about changes in motion. When a body at rest relative to a given
observer begins to move, he must conclude that a force is acting on the
body in the direction of the observed motion. When a moving body is
observed to slow down, he must conclude that a force opposite to its
direction of motion acts on it. And, finally when a body is observed to
follow a curved path, he must conclude that a force having a component
perpendicular to the line of flight r' Ling on the body to cause
this deviation from a straight path

#2-3



NEWTON'S FIRST LAW
OF MOTION

A BODY REMAINS AT REST OR IN
MOTION WITH UNIFORM VELOCITY
UNLESS ACTED UPON BY AN
EXTERNAL, UNBALANCED FORCE

ONCE A BODY HAS BEEN SET IN MOTION
IT IS NO LONGER NECESSARY TO EXERT
A FORCE ON IT TO KEEP IT MOVING.

FIGURE C)

FIGURE

THE MOTION OF AN OBJECT CANNOT
BE SPECIFIED UNLESS THIS MOTION
CAN BE REFERRED TO SOME OTHER

BODY.

FIGURE. C)

FORCE IS THAT WHICH CHANGES THE
STATE OF MOTION OF A BODY.

FIGURE C)
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3/2 A AnuJo TOd interpret a variety of natural phenomena

relv4ant to Newton's First Law of Motion in terms of the

First Law.

;44144W- :urn now to page 15A of your STUDY GUIDE

tO U.L.tinue with your work.
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Newton's Fir:tr. --aw s specifir=-411y concerned '-uth bodies thy- are
either at TE-17- -11.1k-ive to the abserver, or motion with =alarm
speed in a z ---gh line. The first law empausizes that a hmalw
will remain =est if it is motionless to himpin with, or 0-7:r-it
will maintaL-eo==s,---= motion if it is initiNtay moving, some
outside agemtrcammoille of exerting an unbalanced force acts: off it.

As might be , New=ams Second lawaiescribes the -1-71Al-fon-
ships amen% that --i-rri'luence a bode -nthile it is 6Wmnging

speed or sue- of motion_ body at in motion
constant ..;mh, straight 71-ne is not accelerating; the neament

acceleranrc--. the pictare, the first law no longer FIF-,'lips.

(Figure 1) anamine,r- an ordinary maple pendia= swinging-nun& and
forth on a -fr:Mess bearbmg. :Throughout: a single- swtmg, say
from B to drawing, therlearity of the bob changer Iran
zero at 3 smeLL:==. -the maxim,- -spy': it can have at point . Since
the bob TIVISIt:=1Mar to .rest befare-remersingAirection, poit B and
C must be pimusslthere the velocity Is zero; :frough thelidstance
from B to A, tt--'-aenst pick up speed, zeachimg.:-Isaxiamml at A.noid, slaw-

ing-down ritieftmeter until it rises rm-potat-C

The first low swarm that the unbalanced fonom on the hodyrls zero
if the veloalitv of the body is constant. an this sense, mils first
law defines nitsnens a phys17-1 quantity needed to change dee
velocity of amtditart. Since the-velocity of the pendulum Saab pries
continuously IMemegleaut its: emotion:, some .kind of unbalancei'force
must be aottIng AXIS at all times. (Strimtly speaking, thereis one
point in the mint of a pendulum where the unbalanced force-dal the
direction of matt= is zero and the velocity constant. Thiapcimt
lies at the -mmest point in the swing.) Newton's interest lay in
the relationship be was certain existed between the force applied to
a given body sand the acceleration it would,acquire as a remit of
this force.
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(Figur= 2) With the intut=iam.zfa"zeeer genius, Newt= able to

phrase the relationship In .:111.e. simple terms shown_m=his figure.

The first statement is a vector eqszatian which indicate` s-that the

acceleration of a body is directly pruportional to the -unbalanced

force in the direction of the force- Clearly, mass in this relation-

ship is a constant of proportionality. If the directic of the un-

balanced force is constrained along, say, the x-axis of a s of

coordinates CE ), then the acceleration will occur a the x-axis,

tmo, so that the equation may be written in scalar. form As .shown in

the lower expression. Alternatimety, the scalar equaminn,may be

used when the unbalanced force is applied in the sameeibbrectinn as

the body'is already moving (or in the opposite directnua0 strvire the

vector signs are unnecessary in this special case..

The relation F =ma
x.
implies, then, that if the force is doubled,

the acceleration will double (loot the velocity); ii :the force is

--reduced to 1/3 of its initial value, the acceleraittiant-will go down

to 113 of its formervalue. Imall cases, the -mass: Is as

-main constant.

Z r ZJII/ to

Mitre are many ways to demonstnane the validity of.liewton',,--74 Second

-law with real moving. Objects. Owe rather ingenious merit's& involves

a mendwikum carried by an amceleraning body.





(nigure 3) Mhis can .b.e acme with a toy car driven by

a small fuel -b mmning ml engine. The pendmlum plant is

mounted an a ismaillriest !secured to the car- Ahem the

jet engine is Wormed n, the car accelerates carryffing

the pivot with irc. !However, since the horizmntaii force

is not imoedtharely appliled to the bate mf the pembalmm,

it tends to may beinissimil it is accelemmtailamar

refettly rkeTnill of tae ,%kani-Pd string. Wain& tine

stmamg it a-ex:ale marked ntr: in such a way that -dem

emtemt to whip the string.slants backward can be read

off..
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(Figure 4) To analyze the motion of a pendulum, it is best

to start with the bob hanging straight down as it does when

the pendulum is at the bottom of its swing or when it is

motionless as shown. It does reside in the earth's gravita-

tional field so that it is subject to gravitational accelera-

tion g. This is the downward acceleration the bob would have

if the string were cut so that it could not provide the force

that balances gravitation.

(Figure 5) Now imagine that the pivot of the pendulum is

given an acceleration a to the right, along the horizontal or

x-axis. As mentioned previously, the bob will trail behind

until the string slants enough to produce some angle 9 with

the vertical line dropped from the pivot. As will be shown

later, as long as the acceleration imparted to the pivot

remains constant, the angle of slant 9 will also remain constant.
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(Figure 6) In this figure, the bob is shown to have an

acceleration a in a direction opposite that of the pivot.

To see why this is done, consider the motion when the

pivot first begins to move. The bob, with zero horizontal

force acting on it at this time, remains where it is on the

x-axis. This means that it is accelerating backward

relative to a fixed y-axis at the same rate that the pivot

is accelerating forward relative to the same axis. At the

instant shown, the bob is subject to two accelerations:

EL, the downward acceleration due to gravity, and oL the

relative acceleration of the bob which, as has been shown,

is equal in magnitude to the actual acceleration of the

pivot.

#3 - 5
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(Figure 7) In this drawing, the slant angle 9 has been brought
down into the vector parallelogram. It is immediately obvious
that the tangent of the angle is a/g, or a = g tan 9. The scale
behind the string in the toy apparatus previously described may
thus be calibrated directly in terms of acceleration. This is
the procedure when the experiment is actually performed.

In doing this experiment, certain reasonable assumptions must be
made. First, it is assumed that the jet engine provides uniform
force throughout the short displacement of the car over the
interval of observation. According to Newton's Second Law
(F = max), the acceleration should also be constant throughout
the trip under conditions of constant force because mass is
assumed to remain constant. This is the second assumption; it
is quite valid for velocities that do not approach that of light.
Also, the small amount of fuel used during the short trip is taken
as negligible. With constant acceleration, the slant angle also
remains constant throughout the motion. If the car is brought to
an abrupt halt by some obstacle at the finish line, the bob will
swing over an equal angle, in the forward direction making it
rather easy to read 9, or the actual magnitude of the acceleration
from the calibrated scale.

The entire experiment just described is performed for the purpose
of determining the acceleration of the car in an easily observable
manner. The remaining two quantities, the force F and the mass m,
are readily measured. The force is obtained by connectingnecting a spring
balance between the car and a rigid support along a horizontal line;
the jet engine is then fired up as before and the force read directly
from the balance. An equal arm balance provides the means for
measuring the mass directly.





(Figure 8) The values given in the figure were actually obtained

when this experiment was performed. An unbalanced force of 0.15

newtons was measured on the balance. When this force was applied

to the car, the slant angle indicated an acceleration of 1.5 m/sec
2

.

The mass of the car and engine turned out to be very nearly 100 grams

or 0.10 kg. Thus, even in a crude type of measurement such as this

it is evident that the product of the mass in kilograms and the

acceleration in meters per second per second is indeed equal to the

unbalanced force in newtons.

Despite its apparent simplicity, Newton's Second Law still stands

as one of the greatest triumphs of a great physical scientist --

perhaps the greatest of all time -- Sir Isaac Newton.

#3 - 7
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3/2 B 1orze and interpret a variety of natural

Afteramena relevant to Newton's Second Law

In terma:cf the Second Law.

Please turn to page 23A of your STUDY GUIDE

to continue with your work.
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This brief discussion of Newton's law of motian is to be

based upon a simulated experiment that can be readily

duplicated with extremely simple equipment.

The third law has been stated and restated in a multitude

of forms. For the purpose of this discussion, the form

given in Figure 1 will be utilized.

When one analyzes tills statement-, it is apparent that it

Implies the follon-ai.

1. A force cannot exist alrimw-1 forces always come in pairs;

2. Two bodies are involved ln the application of any force;

3. A force applied by one body, say body A, may be called

an action. The body on which the "action" acts is

another body -- body B. Body B then applies an equal

force oppositely directed on body A; this force is

designated the "reaction".

The alternative statement; "For every action there is an equal

and opposite reaction" is acceptable only if one mentally a the

fact that "action" applies to one body while "reaction" apes to

a second body.

#4-1



IF Y A EXERTS A FORCE
BODY T,; N Eke Y

Ex TS A FORCE OF EQUAL
MA GAIITUt , OPPOSITELY
DIRECTED, BODY A



Newton's third law may be expressed symbolically as shown in

Figure 2. In this statement F represents the force considered

to be the "action" and R represents the "reaction". The

presence of the negative sign before the 'R" specifies the

oppositeness of the reaction force.
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The simulated experiment begins with two people, A and B,

and a spring scale which reads up to about 30 units of

force. The actual unit used is of no consequence. A holds

the ring of the balance and B proposes to exert a force

on the hook thereby causing the balance to indicate the

magnitude of the force, as shown in Figure 3.
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A says to B, "Let's see you exert a force of 15 units on the

hook so that the scale dial will read that figure." As B

starts to pull on the hook, A begins to move toward B -- in

the same direction as the force B is trying to exert -- thus

giving way to B's pull by matching his attempt to pull on

the hook as in Figure 4.

With the hook moving toward him as fast as he pulls it, B finds

that he cannot make the balance giving any reading other than

zero. Since A permitted the balance to move toward B, there

was no reaction force against which B could apply his force.
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On the other hand, if A holds the ring of the balance firmly

and does not give ground, there will be a reaction against

which B can exert his force as illustrated in Figure 5.

In this case, as long as A does not permit the balance to

move with B's pull, B can make it read anything he likes

within the capabilities of his physical strength. Note that

A really does exert a force to the left to hold the scale

motionless while the force exerted by B can stretch the

spring and cause the needle to rotate on the dial.
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The experiment thus far has demonstrated the need for force pairs

in nature. The next part of it proves that these oppositely directed

forces are indeed equal in magnitude. Referring to Figure 6, two

identical balances are illustrated, one held by A and the other by

B. At the instant shown in the diagram, neither person is exerting

a force, hence both balances read zero. Next, each of the partici-

pants is told to exert a specific force on the hook he holds in his

hand: A is told to make his balance read 5 units while B is in-

structed to cause his to read 15 units. The result? No matter

how earnestly each of the people tries, he cannot follow his

instructions. Regardless of the disparity in weight or size of the

participants, they cannot bring about the scale readings desired.

The actual result is shown in Figure 7. Both balances give

identical readings at all times; they quiver, oscillate,

waver, and jump around as the participants tug and give way,

but their neeeles remain in exact synchronization throughout.

If B pulls harder, his balance reading rises but so does A's;

if either one relaxes his pull, both readings go down equally.

Forces exerted this way form an action-reaction pair; at any

given instant, the two forces must be equal in magnitude but

opposite in direction.

A simple experiment like this is most convincing. In particular,

it shows that forces do indeed come in pairs and that two bodies

are always involved. The force that A exerts on B must be equal

in magnitude and opposite in direction to the force exerted by

B on A. That is, F = -R.
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Newton's
3rd Law

TERMINAL OBJECTIVES
it

3/2 C Analyze aild interpret a variety of natural

phenomena relevant to Newton's Third Law

of Motion in terns of the Third Law.

./

Please turn to page 35A of your STUDY GUIDE

to continue with your work.
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ATWOOD'S
MACHINE



The acceleration of a freely-falling body on the surface of the earth is
roughly 32 ft/sec/sec or 9.8 m/sec/sec. When an object is allowed to fall
freely over even the longest distances normally available in the physics
laboratory, the time of fall is too short to permit measurement with any
degree of precision using a standard stopwatch. This makes the direct
measurement of g difficult unless special measuring devices are available.

The Atwood's machine overcomes this difficulty. Essentially, the machine is
designed to dilute gravity by a known or readily calculable factor; the
acceleration of a falling mass is then measured with standard tools and .g
calculated with the help of a simple equation which will be derived in this
discussion. The usefulness of the Atwood's machine may also be extended to
a study of the forces that govern the behavior of the string-mass-pulley
system typical of this machine.

The original Atwood's machine shown in Figure 1. It consists of a
single pulley, a string, and a pair of masses, either one of which may be
individually changed. The double-pulley arrangement illustrated in
Figure 2 is a labo,tatory modification of the original; it is merely some-
what more convenient to use but it changes nothing of the Atwood concept.

Two fundamental assumptions are required to idealize the laboratory equipment:
(1) the pulleys are frictionless; fine ball-bearing pulleys are available so
that this assumption is very closely approximated; (2) the string is massless
and inextensible. The use of a special nylon string makes the actual situation
approach the ideal satisfactorily.

Suppose that the two masses in Figure 2 are equal. For this condition, the
system will remain in equilibrium no matter where the masses are placed.
Since the value of g for each mass may be taken to be the same, Newton's Laws
may be readily applied to explain this result. Consider the free-body diagram
of either mass shown in Figure 3. The weight of thiS mass acts downward from
the center of gravity as indicated by the vector arrow pointing downward. A
second vector arrow pointing upward represents the tension (force) exerted by
the string on the mass. Its length is equal to that of the weight vector to
point out that the two forces are equal in magnitude but oppositely directed.
The resultant vertical force is then zero and the system remains in equilibrium.

Consider now that a small additional mass is added on one side as in Figure 4.
When the string is released, m

1
accelerates downward while m accelerates

.

upward. Because the same string is attached to both masses,
2
rt is justifiable

to assume that the same tension exists throughout the string. (If the string
had mass, this assumption would not be strictly correct but in this idealized
situation it is quite accurate.)
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The free-body diagrams for both masses during the acceleration

process are given in Figure 5. Additional mass has been placed

on the left making ml larger than m2. Thus, the weight of ml,

that is, m
1
g is greater than the tension. The difference

between m
1
g and the tension T represents an unbalanced force

acting downward on this mass so that it accelerates in this

direction. The magnitude of the acceleration is, of course,

given by the second law -- F = ma and is shown as "a" in

Figure 4. The unbalanced force is mig -T and may be substituted

for F in the second law equation y!.elding: mig T = mia. The

mass on the right accelerates upward at the same rate -- &gain

because the string is massless and inextensible. In this case,

T is larger than m2g. The second law equation for m2 is, there-

fore, T - m2g = m2 a. These equations should be studied carefully

before proceeding since they are key statements.
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Clearly, T can be eliminated from the equations by adding them

algebraically. This procedure is demonstrated in Figure 6. The

-1_17a1 equation:

ml m2a = . g

m
1
+ m

2

provides the "dilution factor" that makes the Atwood's machine so

useful. This factor is the fractional term on the right side. It

should be noted that it will be a small proper fraction if ml is

not made much larger than m2. In other words, to achieve a large

amount of dilution so that a is substantially smaller than p and

tverefore easily measurable, the weight added to the left side

should be a small .fraction of the initial weight.

As mentioned previously, the Atwood's machine may also be used to

demonstrate the relationship between string tension and acceleration.

To do this, it is first r,cessary tc reexamine one of the equations

just developed. Figure 7 repeats this relationship. The "dilution"

equation above has been substituted for a in T m2g = m2a. The

resulting equation then relates tension to mass and 2J the

acceleration a has dropped out, of course.

Before turning to Figure 8, the student should attempt to simplify

the expression given as the final step in Figure 7. When this has

been done, reference may then be made to Figure 8 as a check. This

equation provides the information that the tension in the string

during the acceleration process may be determined from twice the

product of the masses and divided by the sum of the masses.
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A relatively simple experiment may be set up to verify this

statement as in Figure 9. A pair of spring balances has been

inserted in the string as shown. The masses are, say, 1000

grans each. Since each balance maintains equilibrium with its

particular hanging mass, first law considerations immediately

dictate that each balance read 1000 x g. The g_ multiplier is

inserted merely to keep the units correct; weight should be

measured in force rather than mass units and, in this case,

the weight unit should be the gram-centimeter per second per

second or dyne. Alternatively, the tension may be computed

from the expression given in Figure 8 by substituting 1000

grams for each mass and solving for T. This has been done in

Figure 10. This calculation is equally valid for either mass,

hence it shows that the tension is the same for both masses.

In the next step, a mass of 400 grams is added to the left

side and the string is released while either one or both of

the balances is observed during the acceleration process. It

is noted that the reading in either case is 1,170 indicating

that the tension is 1,170 x g dynes.

#5 -4
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As a final step, the new mass value is substituted in the

expression for tension shown in Figure 10. When this is

done, the result agrees with the simulated experimental

result just described. The student is requested to make

the necessary substitutions and see for himself. Should

he have difficulty in proving this out, he may refer to

Figvre. 11 where the problem has been solved.

This discussion has attempted to present several thoughts:

(1) The Atwood's machine is capable of providing

relatively precise but indirect measurements of

(2) The Atwood's machine can be used to verify the

predicted tension in a string on which a mass is accelerating.

In this sense, it also serves to corroborate the first and

second laws of motion within the limits of error of the

experimental apparatus.
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ATWOOD'S
MACHINE

TERMINAL OBJECTIVES

3/3 D Apply. the "free body" approach to

problem solutions.

Please turn to page 13A of your STUDY GUIDE

to continue with your work.
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ILLUSTRATED TEXT (1) (No Figure)

Imagine that you are a passenger in an automobile negotiating a sharp right

turn. You might find yourself tending to slide along the seat toward the

left. From your point of view, some force of unknown origin appears to act

on your body to the left, so you invent a suitable name, calling it centrifugal

force; that is, "centerfleeing" because it acts outward from the center of the

circle you are negotiating. All things considered, you can't be blamed for

doing this: you did feel this force and your body did respond to it and so it

is very real to you. In actuality you were deceived by considering the motion

in terms of the frame of reference of the car which is an accelerating reference

frame, where Newton's laws may be so simply applied. If you look again at the

situation through the eyes of an outside stationary observer, he sees that you

tended to move in a straight line while the car moved along a curved path.

Therefore, while the car moved to the right, it appeared to its occupant,

moving with the car, that he was being thrown to the left by a force. For this

reason, the centripetal force you felt as an occupant of the car is often

called a fie' !ious force.



ILLUSTRATED TEXT (2) Fig. 1

Please turn to Figure 1 where we consider a highly analogous situation to

demonstrate the fictitious nature of the centrifugal force.

Here, imagine you are sitting on a chair which someone quickly jerks to your

right. Here, too, you would feel as though you were falling.to the left,

although no force acts on you in that direction. Here again you might accuse

a fictitious force of pushing you to the right.

To help us understand the forces involved in.circular motion, let's consider

other ways by which we could cause the car to take a curved path.
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ILLUSTRATED TEXT (3) Fig. 2

In Figure 2 we enlist the aid of a motorized toy car, with wheels fixed in

the straight-on position, which we place on a tabletop. In order to curve

its path we could place a fixed pole at the center of the curve and tie a

string between it and the car. The string then would guide the car around

the curve, by always pulling it in toward the central pole. The string then

would be supplying the inward, centripetal force, needed to curve the path of

.
the car, and without which the car itself would drive along a straight line

at constant speed, v. When we desire to stop curving its path, we merely

release the string so that the car may now proceed along its present heading -

a tangent to the curve from the point where the.string: was released.

The same forces are acting in the case of the real car and its occupants.

Inertia at any instant, wants the car and passengers to travel in a straight

line at constant speed, but an inward force, the reaction to the force of the

tires against the road, curves the path of the car. The passengers, however,

must depend on friction against the seat to pull them into the same curved

path.
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ILLUSTRATED TEXT (4) Fig. 3
Fig. 4

While the apparent centrifugal force discussed earlier is fictitious and is

due to the accelerating reference frame, there really are centrifugal forces

occurring in this problem. They are the reactions to the centripetal forces

we find. For instance, in the case of the string guiding the car, it pulls

the car inward (centripetally) and at the same time pulls the post outward

(centrifugally). While the post is fixed, and therefore does not undergo an

an acceleration, the car is free to respond to this force and its path is,

therefore, curved.

Countless other examples of circular motion may be observed. In Figure 4

you can see one which is becoming more and more common.



CENTRIPETAL & CENTRIFUGAL FORCES
IN CIRCULAR MOTION
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ILLUSTRATED TEXT (5) Fig. 5

As long as a centripetal force acts, the path of the car and thus its velocity

changes: that is, the car accelerates centripetally in the direction of the

force, given by the equation

v2
a
c
=

r
as shown in Figure 5

Substitution of centripetal acceleration into Newton's Equation of Motion,

F = ma, we find

Fc =
mv2

r



Centripetal Acceleration

V2

Substituted into the Equation of Motion

F = ma

Yields an Equation for Circular Motion

mv2
r
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Work When Force
Varies In Both

Magnitude & Direction



Fundamentally, work is a product of a force and a

displacement. If the force is constant throughout the

displacement, the problem of determining the work done

by the force is a simple one. However, since force is

a vector quantity it may vary in magnitude, direction,

or both and, should this variation occur during the

time of the displacement, the task of finding the work

done naturally becomes more complex. An understanding

of the procedure to be used in calculating work is best

attained by moving through a series of examples starting

with the simplest type and gradually introducing the

possible variations.



(Figure 1) An inclined plane making an angle of 30° with

the horizontal carries a block on which a force F acts.

The plane is to be considered frictionless, hence, the

force F produces an acceleration of the block up the incline.

As a result of the action of F, the block is displaced from

position's to position sV The problem is to find the

work done by the force F over the distance from s
1

to s
2'
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(Figure 2) One way to solve the problem is to plot the

force against the displacement as shown in Figure 2. The

force appears on the y-axis which is labeled Fs to indicate

that the force acts along the path over which the displace-

ment occurs -- that is, parallel to the incline of the

plane. Assuming the force to be constant throughout the

displacement, it is plotted as a straight horizontal line

parallel to the x-axis from sl to s2. Since the total

displacement is (s
2

-s
1

)
'
from the basic definition oc

work it _s seen that the work done is F (s2 -si) -- a

scalar product, the force F has therefore ac;:omp:Ushed a

definite amount of work in moving through the distance

s2 -si.
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(Figure 3) Note the new condition introduced in this drawing.

The force F is no longer parallel to the plane: instead, it

is horizontal, making an angle of 30° to the line of the

incline. The force exerted in this direction would again cause

the block to accelerate but, as might be anticipated, the

acceleration would not be as great as it was in the previous

example for a force of the same magnitude. In this case, only

the component of F parallel to the plane contributes to the

acceleration and, of course, this component is smaller than F

itself so that one would not expect the acceleration to be as

great. To determine the work done by F under these changed

conditions, it is necPsi;ary to calculate the magnitude of the

component of F parallel to the plane, that is Fs, since only

this component is involved in the work process.
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(Figure 4) This is a plot of Fs versus s once again but here

F
s is the component of F parallel to the plane, that is, F

s
=

F cos G. The component perpendicular to the plane does not

contribute to the work, hence it is omitted from consideration

altogether. The angle 9 between the applied force and its

useful component is the same as the angle of incline as is

easily proved by elementary geometry'. With the magnitude of

F constant and with the angle remaining unchanged throughout

the displacement, then F cos 9 is also a constant, Once

again the scalar value of the work is merely the product of the

useful component of the forc and the displacement or

W = F cos 9 (s
2
-s

1
) (The area under the curve)
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(Figure 5) The analytical approach 1:: giver, in Figure 5.

On the first line is the general aLmpression for the work

W as the integral from s
1

to s
2
of Fds. When this dot

product is expanded, the expression given in the second

line is obtained in which F cos 9
F,s

is the component of

the original force F in the s- direction. The term ds,

of course, is the incremental dit,placement along which

F is acting.

Applying this to the simplest case as discussed above, F

is constant and when it is parallel to the plane, the

angle 9 is zero, hence the cosine of the angle is unity.

The constant F may be roved to the left of the integral

sign, cos 9 dropped, to yield the expression given in

line 3. The integral of ds is simply s, so that the

evaluation proceeds as in lines 4 and 5. Note that this is

exactly the same expression as was formerly obtained by

using the.area under the F-s curve.
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(Figure 6) This development is based on the second example

in which F is horizontal rather than parallel to the plane.

The first two lines are self-explanatory. In the third line,

F cos 0 has been moved to the left of the integral sign

since both are constant, and the subscript "I" has been

added to the 0 to indicate that this is the angle of the

inclined plane. Evaluating the integral as in lines 4 and

5, it is seen that the final expression for the work done is

identical with that which emerged from the geometric

analysis above.
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(Figure 7) This is the same diagram as in Figure 1, but a

new element is to be supplied by the reader's imagination.

Let the force F increase in magnitude at a steady rate as

the block is moved from s
1

to s
2.

With the force increasing

in this way, its magnitude is clearly some function of the

displacement; as a matter of fact, the function must be a

linear one if the increase occurs at a uniform rate as

stipulated. This means that the relationship between F at

any instant of the displacement must be related to the

displacement by a proportionality constant k. That is, F = ks.

#7-8
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(Figure 8) When such a varying force is plotted against

displacement, the graph shown in Figure 8 results. The angle

made by the applied force is still constant but it may have

any value at all since Fs = F cos 9, but the term Fs has been

replaced by ks as previously explained since the force is now

a function of displacement. The graph must be a straight line

starting at the origin because F must be zero when s is zero,

and its positive slope indicates that the force increases with

displacement.

The student is now earnestly requested to set up the required

integral for. determining work using the procedural pattern

shown in Figures 5 and 6. He is to solve the integral for a

general expression giving work in terms k, 9, and s without

looking ahead in the text. Only after this has been attempted

should he proceed.
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(Figure 9) The solution to the problem appears in Figure 9.

It should be checked against the student's approach to verify

the accuracy of the work or to locate the correct errors.

Another valuable step at this point in the work is to work out

the equation by the geometric method involving the determination

of the area under the curve bounded by si and s2 in Figure 8.

To find the area of the trapezoid, find the area of the base

rectangle and add to this the area of the remaining triangle.

When properly handled, this method will yield the same expression

for work done, or

W =
2 k cos 0 (s

2

2
s
1

2
)

The final item in this discussion deals with the calculation

of work when the force varies in both magnitude and direction.
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(Figure 10) The student must now imagine that F is not only

growing in magnitude but is also changing in direction in some

steady manner as the block moves up the plane. To calculate

the work for a complex action like this, it is necessary to

know how the components of F vary with position, or to have an

expression that gives the relationship between the component of

F parallel to the plane and the displacement itself. One such

possible relationship would have it that Fs, the parallel

component, is directly proportional to the square of the dis-

placement or

.F
s

= ps
2

where p = constant
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(Figure 11) In this figure, F
s

(-ps2) has been plotted

against displacement. The resulting curve is a parabola

as might have been expected from the equation. Using a

procedure identical with that of the previous examples,

the work may be calculated by setting.up and solving the

proper integral equation.

The student is again asked to set up this equation and

evaluate it in general terms before proceeding to the

conclusion of this text. He may then go on to the next

figure.
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(Figure 12) This is the general equation required for

finding the work when the force varies in both magnitude

and direction e.ccording to the relationship F
s

= ps
2

.

The final evaluation expression that should be obtained

is

1 3 1 3
W = 3 ps

2
- ps

1
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Work When Force
Varies In Both

1

Magnitude & Direction

TERMINAL OBJECTIVES

5/1 B Calculate work associated with variable

forces.

NIL

Please turn to page 26A of your STUDY GUIDE

to continue with your work.





The damage inflicted on one or the other of two objects

that collide at high relative speed depends to a very

great extent on the magnitude of the relative velocity.

Since the physical quantity known as kinetic energy is,

in turn, a function of velocity, an interrelationship

between impact damage and kinetic energy exists. It is

the purpose of this discussion to derive a quantitative

statement which provides information relative to this

relationship.

Approaching the problem from first principles, Newton's

second law of motion may be expressed quantitatively in

the form shown in Figure 1. In the vector equation

given first, the acceleration term a may he replaced by

the rate of change of velocity dli/dt so that the form

of the equation obtained becomes F = m 4/dt. This form

of the second law will be used in this discussion.

The work done on a body is given byr?.d: (Figure 2), in
-.

which F is the resultant force acting on a body and ds is

an element of distance over which the body moves as a

result of the unbalanced force acting on it.

#8 - 1
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Figure 3 illustrates how the second law and work statement may be

combined in a single expression. The force term has been replaced

with m d-V''/dt and the limits of integration (from si to havehave been

The "d t-" term in the .pression shown may be considered

,ple divisor in the fraction and may, therefore, be shifted

to a. different position as shown in' Figure 4.

The advantage gained by shifting this term is apparent: since

g/dt represents the velocity of the body, it is now possib].e to

rewrite the equation in the form illustrated in Figure 5. here,

the work done on the body is expressed in terms of mass and velocity,

the displacement having been eliminated. To accommodate the new

form, the limits of integration may now be changed from displacement

to velocity as indicated in Figure 6.

This integral is quite easy to evalun . The reader should perfurn

this integration:for himself before to -ing to the solution given in

Figure 7. The integral of miidii is r: -/2. With the substitution

of the limits, the expression final]y becomes

Work done = W =
1 2 1
3mv - my

2

L 2 2 1

1
The quantity -imv

2
is an entity of substantial importancein physics;

it is called kinetic energy. Thus, the statement above may be

verbalized by saying that the difference between initial and final

kinetic energies of a body is equal to.the work done on the body to

bring about this change of kinetic energy. This is summarized in

Figure 8. It is an important result and well worth noting.
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Under the proper conditions, this process is fully

reversible. That is, if an object already possesses

kinetic energy it then has the capability of doing

work; for example, when the kinetic energy of a

fast-moving automobile is expended in a collision

with a sturdy tree, work is done on both the tree and

the automobile. This work generally takes the form of

a gashed tree-trunk and a demolished car!

The expression in Figure 8 contains another implication

that is extremely important both in physics and in our

daily lives. The kinetic energy of any moving body is

a function of the square of the velocity. An automobile

moving at a speed of 20 mi/hr has an easily calculated

kinetic energy and, consequently, the capability of

doing a given amount, of damage if it is brought to

rest in acollision. When the speed is increased to

40 mi/hr, however, the kinetic energy ---hence the

capability for inflicting damage --- quadruples. At

60 mi/hr this capability is 9 times as great as at

20 mi/hr, and at 80 mi/hr it is 16 times as great!
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Modern buildings of glass and stainless steel embrace

every modern scientific technique to provide pure air,

good lighting, many other material comforts. But

despite the emphasis on the new and the modern, relatively

primitive methods are still being used to tear down the

original structures. Perhaps these methods persist

because they work; perhaps they are economical and fast.

In any case, it is not uncommon to see an ancient wrecking-

ball crane in action along the streets of New York City.

(Figure 1)

The wrecking-ball is not unlike the battering ram used by

the Romans. It hangs on a steel cable attached to a

horizontal crane arm. The crane operator gets the ball

swinging by oscillating the arm and, when the swing is

wide enough, he brings the arm quickly toward the building

causing the ball to crash into the wall. Since the ball

is very massive, it develops an enormous amount of kinetic

energy.at the instant of impact. If the ball loses most of

its speed on impact, its kinetic energy is largely con-

verted into physical work.
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A pile driver is another of the primitive devices

mentioned above; it is used to drive wood pilings

into the ground to provide added support for a

building foundation. (Figure 2)

It consists of's massive head or hammer that is

raised to the top of a supporting structure. When

the head is released and allowed to fall, it strikes

the top of the pile and comes to rest, exerting

tremendous force and doing a substantial amount of

work.



FIGURE





The difference between these two sequences should be

emphasized. In the case of the wrecking ball, the

operator imparts kinetic energy to the ball through the

medium of his engine; the operator of the pile driver,

however, merely causes the ball to be lifted from a low

position to a higher one. Note that his engine does not

directly impart kinetic energy to the hammer. On the

other hand, since the hammer was capable of doing work

as a result of the efforts of the pile driver engine,

it is reasonable to conclude that these efforts did

result in some kind of energy storage in the hammer.

While in the stationary raised position, the hammer has

no velocity, hence no kinetic energy. Yet energy has

been stored in it by virtue of its raised position

otherwise it could not have done work at a later time.

Since the hammer has the capacity to do work, it has

energy. (Figure 3)

Potential energy is the energy of position or state.

For the pile driver, position is the important aspect of

the change that occurred. The work done by the pile

driver engine is converted to the potential energy of

position when the hammer is raised to the top of the

tower structure.
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Potential energy may be stored in other 'ways. When a spring is compressed
or stretched the work done in the process is converted mainly into the
potential energy of changed state. An arrow drawn back on the bowstring
changes the state of the bow so that, in bending, it possesses potential
energy it did not have initially. Explosives have potential energy of
state, too; in this case, the change of state is chemical in nature.
Some time in the past an energetic agency like the sun brought about
changes which have stored explosive power in the resulting compounds.
The quantitative aspects of potential energy may be approached through an
example using a spring. (Figure 4)

The spring shown in the upper drawing is unloaded, neither compressed nor
stretched. If the spring is compressed so that its end moves over
distance x, the force required for the compression may be given as kx in
which k is the spring constant (Hooke's Law). In the diagram,. F is
directed toward the right. As the compression proceeds, an increasing
force is required to overcome the resistance offered by the elasticity
of the spring. The magnitude of the force needed to produce a specific
displacement dx is therefore a function of x itself, hence F is
variable. Refer to Figure 5.

If the displacement of the end of the spring is to be from xl to x
2

,

then the work required to cause this displacement is given by the integral
of F dx between the limits x

1
and x2. The vector notation may be dropped

at this point because the force and the ensuing displacement are in the
same direction. This is shown in Figure 6.

It has already been shown that the applied force may be given as kx,
hence kx may be substituted for F in the scalar equation as indicated
in Figure 7.

The integration may now be performed. The integral of kx dx is
1/2 kx . Substitution of the limits yields the final expression shown
in Figure 8.

Thus, the work done in compressing a spring from one x position to
another is the difference between the 1/2 kx values for the two positions.
The reader should bear in mind that this equation specifically applies
to the distortion of a spring, a case where the force required is variable.
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Refer to Flamm 9. Here is a kind of situation in which

potential energy is also involveC -Wean a massis raised to a nigher

position from an initial low posi. ,7;ever a -r-Tatively short distance,

say, one hundred feet or so, the of gravity that resists this

action changes-so little that the c_nange mar b ignored without in-

troducing qimnificant error. For T.L.is limited case the force needed

to raise.the. mass against gravity :nay bre considered to remain_ constant

throughout the action. In this cl'agram the mass is shown to have a

weight mg close to the surface of the earth.

In Figure 10 the weight is shown raised over a distance h to some

higher position. The force required to raise the mass is equal in

magnitude to mg, the weight of the body. The work done in this case

is merely the product of the force and the displacement since the

force is constant.

(Figure 11) The work done in raising the mass to the new position must

result in a change of potential energy equal to mgh. This is a special

case of a change in gravitational poTential energy in contrast with the

previous example where compression -resulted in a change in elastic

potential energy. These ideas may be summarized as follows: the

change in potential energy of a body is equal to the work done in moving

the body (initially at rest) from one position or state to a second

position or state where it is also at rest. You have seen that the force

of gravity can be considered to be constant when a mass is raised a short

distance above the earth. But if the distance through which the body is

raised is large, the gravitational force gradually decreases. For this

condition, the,gravitational Enrce must be considered as variable rather

than constant..

#9-5
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For example, suppose a mass m is iryl-ted a,: a height 111 above the

earth's surface. It's weight from: time Law ''Universal Gravitation

would then be a function of G, the s:unstMs= of gravitation, m, and

M -- the mass of the earth -- as well::: as tmetradius of the earth R

and the height h1. (Figure 12)

Next, imagine that it is raised to a Ina ht h2 which is con-

siderably further from the surface tt:77 1111- In this case, the

weight would be smaller than before:.ame mckiwld be given by the relation

shown in Figure 13. The work needed accomplish this must now ibe

found by integrating F ds between theltatts of h
1

and h2. (Figure 14)

The correct transition is shown in thie lure. The force F is

replaced by its equivalent GmM/(R _mud ds is replaced by dh.

It is left as an exercise for the stuff to carry the integration out

to its conclusion and arrive at a general equation for the work required

to raise a mass from one level to another with respect to the earth

when the distance involved is sufficiently great.

Briefly, then, the change in potential emetgy a a body is equal to the

work done in moving it from some initiamiremtpusition to some other

final rest position. The change in patentiall_fenergy can be determined

from the product of the force and the displacement in the direction of

the force if the force is constant. PaualIy, the change in potential

energy when the force varies must be fimund by Integrating all the

elemental changes in F over the distance thramgh which it must move in

producing the displacement.
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VI, A Use. the concept af-mntential energy for

objects near thesurface of the Earth and.

for springs.

Pease town to page 3nlit of your STUDY GUIDE

tm continue Wth your,,ANalk.
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Physics as many aspects and many paths to follow if one is to realize
a well-rounded training In the subject- Yet despite its ramifications,
there ane certain unifying principles that one consistently. encounters
along almost all of the paths. One of these certainly is the Principle
of Conservation of Energy. This principle is so fundamental and so far-
reaching that the student mwst make every effort to understand all of
its implications and applications, as sell as the statement of the prin-
ciple itself.. The ability to say, "Energy can-neither be created nor
destroyed but only changed in form" does not signify comprehension nor
the ability to solve practir=1 prohlems in which conservation is involved.
Only by careful analysis followed by conscientious practice can this
ability be developed.

lt,would be well to begin dhe analytical treatment with a review of some
concepts that have been previously intendsced. Suppose that an external,
unbalanced force As prppl1Pd to a freehold:mi. The work done on the free
body will be equal inmagaitude to the Champ of momentum of the body
multiplied by the displacement due to the action of the force. Figure 1
shows why thds statement is justifiedL litsHtotal work done on the body
is the integral of F ibr. .Bat from that neL4,tmd law of motion, it is known
that any force may be._ laced by the Chasse of momentum it produces.
Thus, it is perfectly valid to say that tI integral of F dx may be re-
placed by the integral: of the change of musemtum multiplied by the
displacement dx. Thos,

Work dune =JrF dx =trm 17- dx

fever, when the right-Wana expression is Integrated it becomes A 1 m v2,
or the change in kinetic energy of the body to -which the force has been
applied. The relationship is given verbaaly in Figure 2.
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Next consider a situation in which a force is applied to an object

which then moves under conditions such that a restoring force

appears as a result of the motion. When a force is applied to a

mass in a gravitational field to lift it against the pull of

gravity, the object will move to a new position and stay there only

as long as the original lifting force is present. When the lifting

force is removed, the restoring force brings the object back to its

initial position.

A similar situation exists when the spring of a balance, as in

Figure 3, is stretched by an external force. As soon as the hook

of the balance begins to move to the right, the spring begins to

exert a restoring force that tends to bring the hook back to its

starting position when the external force disappears. A completely

analogous action occurs when a spring is compressed by an applied

force. The work done in compressing a spring is again given by the

integral of F.dx. Here, F may be replaced by k2x, where k is the

spring constant. Integrating this expression yields 1/2 kx, the

potential energy of the spring after it has been compressed over a

distance x from an initially uncompressed state. This is summarized

in Figures 4 and 5. So it is seen that under certain conditions, the

work done on a body may become the change in its kinetic energy and

that under other conditions, the work done may be converted into

potential energy.
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Is it possible to set up and analyze a composite situation,

that is, one in which the work done is partially converted

into a change in kinetic energy and also partially into a

change in potential energy? The answer is - yes, it can

be done quite simply for the conditions shown in Figure 6.

A mass, securely fastened to the end of .a horizontal

spring, is acted on by a force -fa to the right. Two things

happen simultaneously: the mass goes into motion, gaining

kinetic energy, and the spring begins to exhibit compression.

Suppose that the mass is displaced a distance x in the

process as indicated in Figure 7. This compression gives

rise to a restoring force equal to the spring constant k

multiplied by the compression x. The resultant unbalanced

force on the mass must therefore be the difference between

the applied force and the restoring force or Fa - kx. This

is summarized in Figure 8. The student should pause at

this point and contemplate the implications of the

development thus far.
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A free-body diagram is next in view in Figure 9. The mass

on the end of the spring is acted upon by F
a

, the applied

force, to the right and by the restoring force kZto the

left. The difference between these two forces is the

resultant force on the mass. The external work done by the

->
agency that supplies the force Fa is the integral of F dx

as before; in compressing the spring, this agency con-

tributes to the potential energy of the spring, this

potential energy being the integral of kx dx, of course.

This is summarized in Figure 10.

What, then, is the action of the resultant force Fa - kx?

The kinetic energy of the system must change as a result of

this action. Mathematically expressed, the situation may be

described as shown in Figure 11. Descriptively, this means

that the external work done by the agency that applies the

force F
a

is converted into both potential energy of com-

pression and also into a change of kinetic energy of the mass.

4110 - 4
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The "bar graphs" in Figure 12 express this result graphically. The sum

of the energy changes in the system must be equal to the total energy

change in the system. In the most general terms, when external work is

done on a body in any system there may be a change in the potential

energy of the system or in the kinetic energy of the system or in both.

In any event, regardless of the alternatives that are followed, the

external work done must equal the total energy change of the system.

Figure 13 indicates a state of affairs which may at first appear

trivial but which most assuredly is not. If no external work is done

on a system, the change in total energy in the system is also zero.

But this does not mean that neither the potential energy nor the

kinetic energy has changed. It merely means that, whatever changes do

occur when the work done on the system is zero, these changes must com-

pensate for one another. Refer to Figure 14. If there is a positive

change (increase) in kinetic energy, then there will be an equal

negative change (decrease) in potential energy if the work done is

zero.

This is the essence of the Law of Conservation of Energy. In part, it

states that the total work done on a system must be equal to the

algebraic sum of the enery changes that occur in the system as a result

of this work. This is often called the "work-energy theorem". A second

implication is that, even when no work is done on a system by an outside

agency, there may still be changes in potential and kinetic energy but

that these changes are compensatory. What is gained in one form is

lost in another. Energy cannot be created nor destroyed but only

changed in form.
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5/2 C Answer questions pertaining to the statement

of conservattonrof energy.

5/3 B Apply conservation of energy to a simple pendulum.

5/3 C Demonstrate a knawiffiedge_Aaf, specifies required for

the application ofithe Ocomarvation of Energy

theorem.

Please turn to page 34A of ydur STUDY GUIDE

to continue with your work.
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ILLUSTRATED TEXT (1) Fig,

The center of mass of an object may described as that single point at

which all ml itszmass appears to act. For an object of uniform density

having some regular shape, such as a :solid wooden ball, its center of

moss is z,easily locgted to be at the geometric center, as you can see in

Figure . Finding the location of the center of mass for a hollow

rubber 6,.!Ll is no more difficult - -it too is at the geometric center,

even though none of the actual mass of the ball is located at that very

point.

Many objects, having, either regular or irregular shapes, have centers of

mass located in spaceprobably the chair you are sitting on at this

moment or the cup or glass you used this morning are good examples to

consider. For these objects, the center of mass acts in every mmy juste

as it does for one baying a center :of muss within the medium itself - -as

with the solid tail..



CENTER OF MASS

(a) for a solid ball

(b) for a hollow ball



ILLUSTRATED TEXT (2) Fig. 2

The concept of center of mass can be a powerful tool in the study of

motion, since all rigid bodies, regardless of shape, volume, or density,

can be considered to be point masses acted upon by external forces,

thereby simplifying the application of ewton's laws of motion.

A task that at first seems difficult is the analysis of the motion of

a body when internal forces are also acting. Let's see what effect,

if any, they might have. TO do this, let's examine the effect of an

explosion om the center of mass of a s consisting of two equal

masses. In Figure 2, you see two identicAT cars about to be exploded

apart by a compressed spring. Before the explosion, the center of mass

of the system is midway between the cars. When the explosion occurs,

each car receives an equal, but opposite :forme to the other, for the

same period of time, giving ea }in accations. But at any time,

the center zf mass of the system can befammi to be at the same point,

unaffected by the explosion-
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ILLUSTRATED TEXT (3) Fig. 3

You may well ask, what would have happened if two unequal masses were

chosen? Let's repeat the explosion, this time with unequal cars; say

they have a mass ratio between them of 1:2. Once again the explosion

will apply equal and opposite forces on the cars, but this time one car,

the lighter one, will accelerate at twice that of the heavy car, thereby

moving twice as far in equal time. Consequently, the center of mass of

the system remains in the same position, unaffected by internal forces

as you can see by examining Figure 3. As a matter of fact, even if the

two cars have some initial velocity while linked together, their center

of mass would continue to move at that velocity even after the explosion

occurs.
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ILLUSTRATED TEXT (4) Fig. 4

Before closing, let.'s apply these principles to some typical motion

problem. A good one to consider would be the motion of an explodable

ball as it moves in a parabolic trajectory. Here, in Figure 4, the ball

is subjected to some initial accelerating force, and a constant gravita-

tion force, both acting externally, as well as an internal explosive force.

Before the explosion the ball travels intact along a parabolic path

governed by the effects of its initial velocity and gravitation. The

ball is then exploded into fragments, each moving away from the center

of gravity at a rate dependent upon the explosive force and its size,

and each still is affected by the initial velocity and gravitation.

Since the explosive internal force has been shown to have no effect on

the center of gravity, its motion continuesi along the parabolic trajectory

as though the ball had remained intact.
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As a fundamental physical principle, conservation of momentum ranks

among the most important; in many situations its usefulness exceeds

that of even the principle of conservation of energy. This is

especially true of collisions between moving objects because there

is little about such collisions that cannot be predicted or explained

with the aid of the principle of conservation of momentum.

Figure 1 diagrammatically depicts two bodies, A and B, the first

having a mass of mA and the other a mass of mB. Body A is moving

toward the right with a velocity vA while body B, also moving from

left to right, has a velocity -;.7-13. Velocity vA is larger in magnitude

than velocity vB as indicated by the relative lengths of the vector

arrows for each quantity. Given sufficient time, body A will close

the separation between the two and will eventually collide with body

B. This event is illustrated in Figure 2.

Assuming that the bodies do not adhere to one another, they will

separate after the collision and move off with velocities that

will in most cases differ from the initial values. The velocities

subsequent to collision are symbolized in the diagram shown in
-.-

Figure 3 as vA, and vB, respectively.
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Regardless of the nature of the collision, that is whether it
occurs between elastic or inelastic bodies or between hard or
soft bodies, the objects will be in contact with one another
for a definite time interval. In Figure 4, the force that
body A exerts on body B

A
-- is plotted against time. At

the.instant that body A overtakes body B and first contact is
established, the force will start to rise from zero. About
half-way through the contact interval, the force will have
risen to a peak and then, as separation or rebound begins, the
force will diminish until it vanishes entirely as separation
becomes complete. A collision, therefore, involves a varying
force acting over a definite time.

For a constant force, the impulse is given as fAt. When the
force varies from instant to instant as it does in this
example, the impulse can be determined most easily by integrat-
ing all the FA t products under the curve. Thus, as indicated
in Figure 4, the impulse is the integral of r.dt between the
limits extending from zero time (first contact) to the time
when separation is completed. This integral is the equivalent
of the area under the curve in Figure 4.

Since this interaction is typical of the kind of phenomenon to
which Newton's Third Law rigorously applies, it is possible to
state immediately that the force exerted on body A 1:0l body B
is identical in instantaneous magnitude with FA

B
throughout the

interval but, of course, is oppositely directeo. Furthermore,
since the time of interaction is the same for FLAB and the re-
action force, then the impulse of B on A must equal the impulse
of A on B. This is shown graphically in Figure 5, and a verbal
statement is given in Figur,I, 6. The negative sign is inserted
on the right side of the statement because this is a con-
venient way to indicate the "oppositeness" of direction.
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The impulse acting on a body is equal to its change

of momentum. Hence, the statement of Figure 6 is

equally valid when written as shown in Figure 7. The

impulse applied to B becomes the change in momentum

of B; the impulse on A becomes the (negative) change

in momentum of A. Alternatively, whatever momentum

is acquired by B is lost by A, or vice versa. In any

of these statements, the negative sign may be shifted

from one side to the other without altering the

significance of the statement. Finally, as in

Figure 8, the implication may be succinctly stated:

there is no change in momentum or momentum is conserved.
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In the preceding development, no attempt was made to specify the
nature of the colliding bodies, their masses, their initial velocities,
or the nature of the collision -- whether elastic or inelastic. The

application of the third law to any type of collision between any two
bodies confirms that momentum is always conserved. (It should be

noted here that this discussion has been limited to head-on collisions
and that the third law, as applied, was also limited in this respect.
It will be shown, however, that this limitation is not required; the

collision may be of any variety -- momentum is still conserved.) The
principle of conservation of momentum is one of the ultimate truths
of Nature.

The general approach to the solution of conservation of momentum
problems is quite straightforward. Starting with the conditions
shown in Figure 9, the sequence of two colliding bodies before impact,
during impact, and soon after impact, one may write a relationship
that expresses the conservation principle in a step-by-step procedure
like this:

1. Write the total momentum of the system before collision
as the sum of the individual momenta of the bodies as

mAITA +

To be strictly correct, the velocities should be indicated as vectors.

2. Write the total momentum of the system after collision as
the sum of the individual momenta of the bodies after the interaction

has occurred as:

mAvA, + mBVB,

3. And finally since the sums must be equal before and after
collision, equate the two sums as shown in Figure 10. When using this

single equation in problem work, only one unknown, of course, is

permissible.

#11 - 4
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CONSERVATION

OF

MOMENTUM

TERMINAL OBJECTIVES

6/2 B Solve momentum problems involving bodies with

variable mass.

6/2 C Analyze situations and phenomena in which momentum

is a significant factor.

Please turn to Page 21A of your STUDY GUIDE

to continue with your work.
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The purpose of this exposition is to define the terms

impulse and momentum as they are used in physics, and

establish the relationship between them.

As a brief review, it is perhaps wise to reexamine the

connection between force, displacement, and work for

the event illustrated in Figure 1. A force is

applied to a body resting on a horizontal, frictionless

table. As a result of the application of the unbalanced

force F, the body is displaced through a distance x.

The work done on the body, Fx is thereby converted to

the energy of motion or kinetic energy and, in accordance

with the Work-Energy Theorem, the work done on the body

is equal to the change of kinetic energy that the body

undergoes.

A somewhat different aspect of this event involves the

measurement of time to establish the interval over which

the motion takes place. See Figure 2.* In this approach,

the displacement is ignored; the time interval from one

position to the next denotes the interval over which the

force acts on the body.
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From the analytical point of view, a rather direct attack

can be made on the problem by using Newton's Second Law.

As in Figure 3, the second law may be written by vector

form as a relationship between force, mass, and

acceleration. Then acceleration is redefined as dv/dt for

convenience and substituted for it in the expression as

shown.

Assuming next that the force is to be applied for a short

time interval dt, as illustrated in Figure 4, the product

Fdt is forme& on the left side making it necessary to

multiply the right side by dt to maintain the equality.

The dt's then drop out leaving the expression given in

Figure 5.

Clearly the equation is in vector form because the quantity
-0.

dv is a vector.. In dealing with work and energy, the con-

cepts obviously lead to a scalar equation; in the develop-

ment of impulse and momentum it is just as obvious that

vector equations will appear.

#12 - 2
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To find the resultant effect of applying an unbalanced force over a
given time, it is necessary to integrate Fdt over this interval.
The left member of the expression in Figure 6 shows how this is
written. In the same equation, the right member has been written
to show that the change in momentum must be integrated between the
limits vi and v

2
. These velocities represent the range of variation

of the velocity of the body over the time interval t
1

to t2,

of course.

In order to integrate the left member, the precise dependence of
force on time must be known and, since it is not known, this member
is left as an unperformed integral. The right member, however, may
be readily integrated in its present form.

This operation is given in Figure 7. The integral of m.d;between

the limits v and v is simply my -mv as shown. The student is
.2

urged to verify this before procee2 ding1 .

The right member now expresses a change of momentum; the differ-

ence between the initial momentum mv
1
and the final momentum mv

2
.

The integral of F dt from
it

to t
2
is called the impulse of the

force. The equation as t now stands is a concise mathematical
statement of what has come to be called the impulse-momentum
theorem. Figure 8, then, presents the complete sequence which
terminates in the impulse-momentum theorem: IMPULSE = CHANGE IN

MOMENTUM. Expanding on this somewhat, it can be restated that
the impulse of an unbalanced force applied to a body is always

equal to the change in momentum that this impulse produces.
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It would be fruitful to work on a specific problem

dealing with impulse and momentum at this juncture.

In Figure 9 is depicted an ordinary carpenter's

hammer striking a nail which is to be driven into a

block of wood. Although most people intuitively

understand why this process can be successfully per-

formed, an analytical approach to this problem is not

difficult and can be quite illuminating. Figure 10

presents some reasonable figures for the mass or

weight of the hammer and its impact velocity in the

hands of an ordinary' man.
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Assuming that the hammer comes to rest after striking the nail,

what force does it exert during impact? This problem lends

itself to solution by the impulse-momentum theorem. The in-

formation in Figure 11 should now be reviewed. First there is

a statement of the impulse-momentum theorem; second, the

weight of the hammer -- 5 lb.'-- is converted into mass by

dividing the weight by g. This is derived from the second law

equation w = mg, so m = w/g; third, the initial velocity of

the hammer is given as v and fourth, the final velocity of

the hammer is given as zero since the hammer is assumed to

stop moving upon impact.

Figure 12 contains the statement that .the change in momentum, or

mv2- mvi, is 5/32 slug multiplied by 44 ft/sec, using the given

data: The next requirement is to find out something about the

impulse of the hammer on the head of the nail. Figure 13 gives

these details: impulse is the product of force and time but in

this case it must be recognized that the hammer applies some

-,/erage force to the nail through the interval of contact.

Assuming that the hammer remains in contact with the nail for

1/100 second, then the impulse is the average force F x 1/100.
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The last sequence of steps in the solution of tae,problem

appears in Figure 14. In the first step, impulse (F x 1/100)

is set equal to the change in momentum (5/32 x 44). Solving

for the average force f, the result is approximately 687 lb.

or 1/3 ton.

The student should consider how a 5-1b. hammer can exert

so large an average force on the nail. A little thought

should show that this large force is obtained by giving

the hammer a large momentum through the medium of a very

large impact velocity. Then, since the contact time is so

short, the resulting large impulse must yield a correspond-

ingly large force.
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IMPULSE

AND
MOMENTUM

TERMINAL OBJECTIVES

6/2 A Solve momentum problems involving bodies with

constant mass.

6/3 A Analyze situations which involve net impulsive

forces acting on bodies of constant mass.

Please turn to page 31A of your STUDY GUIDE

to continue with your work.



COLLISIONS



Collisions

In an isolated system involving two or more bodies which interact with
one another, the momentum at any instant is the same as it is at every
other instant regardless of the number of kinds of interactions that
occur. An isolated system is one in which no external forces act to
change the momentum of any of the bodies within the system. Essentially,
this is a statement of the principle of conservation of momentum. From
a purely theoretical doint of view, it is readily seen why momentum
must be conserved. Selecting a simple case, that of a collision between
two bodies in an isolated system, the forces that act on each body during
the collision must be equal and oppcsite (Third Law) and, since the time
of impact is also the same, then equal impulses act on both bodies.
Impulse is equal to change of momentum, hence the change of momentum of
each body involved in the collision must also be the same. It should
be noted that the kind of collision that occurs --- elastic, inelastic,
or a combination --- does not affect the validity of the momentum con-
servation principle.

Kinetic energy on the other hand is not necessarily conserved in all
collisions. Normally a collision is accompanied by the development of

. sound and heat; these are lost to the system so 1Lhat the total energy
content after the collision must be less than it.was initia:ly. A
collision in which kinetic energy is conserved may be closely approx-
imated, however, with the proper kind of apparatus. Such a collision
is termed perfectly elastic. At the other extreme in which the kinetic
energy content of the system is zero after the collision is the perfect-
ly inelastic collision. Most real collisions are partly elastic and .

partly inelastic. To study a close approach to a perfectly elastic
collision, .an air track is usually utilized.

(Figure 1) This piece of equipment consists of a hollow, triangular
cross-section rail that may be several meters long. Air from a compres-
sor is forced into the hollow section and emerges from a large number of
very fine holes in the sloping sides. A close-fitting glider when
placed on the rail is lifted very slightly so that it rides on a thin
layer of air. The friction is thereby reduced to a negligible value.
When two such gliders, equipped with Flexible, soft springs, are allowed
to collide, it is found that kinetic energy is essentially conserved,
hence the collision is very nearly perfectly elastic. In the sample
shown in the figure, there are two gliders of exactly equal mass m
on the rail. For simplicity, it is assumed that glider 2 is at rest
while glider 1 is set in motion toward it from left to right with a
velocity ul.
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Collisions -2-

(Figure 2) These are the symbols to be used in this discussion.

Since glider 2 is at rest, its velocity before collision u2 is taken
as zero. The velocities of glider 1 and glider 2 after the collision
are respectively vl and v

2.

(Figure 3) To write the equation that expresses conservation of mom-
entum for the type of collision described, it is first necessary to
write the total momentum of the system before the collision. As
shown in Figure 3, the total system momentum before the collision
is mu

l' that is the product of the mass of glider 1 and its velocity.
Since glider 2 was initially at rest, it has no momentum and hence
need not appear in the terms in front of the equals sign to be written
in the equation. The system momentum after the collision is my + mv2,
the sum of the momenta of the individual gliders.- Note that the as-
sumption is made that glider 2 is set in motion as a result of the
impact with a velocity v2 and that the velocity of glider 1 changes
from u

1
to v

1,
also as a result of the collision.

(Figvre 4) The first equation in Figure 4 is merely a statement of
the fact that momentum is conserved since the total momentum before
the collision has been equated with the total momentum after the col-
lision. Since the gliders have the same mass, the factor m is the
same for all terms and may be eliminated by dividing through as shown,
in the second equation. Verbally, the second equation states that
the algebraic sum of the velocities after the collision is equal to
the velocity of glider 1 before the collision. The next thing to be
considered are the kinetic energies of the gliders before and after
The collision.



m = m = mass of each glider

u
1

= velocity of glider 1 BEFORE collision

u
2
= velocity of glider 2 BEFORE collision = 0

v
1
= velocity of glider 1 AFTER collision

v
2
= velocity of glider 2 AFTER collision
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1

After the collision, the system momentum = mv
1

+ mv
2
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(Figure 5) In general, the yetic energy of a moving mass m
having a velocity v is 1/2 my . Thus, the kinetic energy of glider 1
before the collision is 1/2 mug and the total kinetic energy after
the collision is 1/2 mv2 + 1/2

1
mv

2
. If the collision is perfectly

elastic, then kinetic energy is conserved so that it may be expressed
as shown in the top equation. Here again, m is the same throughout
and may be eliminated to yield the second equation.

(Figure 6) These are the two final expressions previously obtained,
the first from the principle of conservation of momentum and the second
from the principle of conservation of kinetic energy, both based upon
the same collision. This point cannot be overemphasized. Since both
equations are perfectly valid, it must be concluded that the change of
velocity of each body in an elastic collision must be such as to satisfy
two separate conditions simultaneously: (1) the sum of the final
velocities must equal the initial velocity and (2) the square of the
initial velocity must equal the sum of the squares of the final veloc
ities.

(Figure 7) The implication of this double-barreled requirement is
most easily seen by combining the two equations as shown here. The
linear equation is first squared and then one equation is subtracted
from the other. The result is obtained that twice the product of the
final velocities must be equal to zero. This further implies that any
one of the following possibilities may have occurred:

(1) Possibly..v1= 0. This would be the case only if glider 1
stopped in its tracks immediately upon impact. When the experiment
is perfored it is found that this is indeed the case: glider 1 stops
dead while glider 2 goes off with the same velocity that glider 1 had
before collision.

(2) Possibly v2 = 0. This could happen if glider 1 missed
glider 2 altogether so that no collision occurred.

(3) Possibly both v
1

and v
2

are both zero. This is not a
real possibility because it is known that u

1
was a red:. velocity at

the start of the collision and clearly

ul 0 0 + 0

Hence, (3) is not to be considered.
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(Figure 8) Observe how this simple statement shows that if the
velocity of glider 1 after the collision (v

1
= 0) is zero, then

the velocity of glider 2 after the collision must be the same as
the velocity of glider t. impact just as was stated above.

(Figure 9) Here again, the substitutions indicate what happens
if the velocity of glider 2 after the collision is zero (v = 0).
It turns out that u = v

1
which merely means that glider 1

2
does

not change its veloc1 ity at all, having missed impact with glider 2.

As a final step in this discussion, the student is asked to use
similar reasoning to determine for himself what would happen if
the two gliders became firmly linked together when the collision
occurs. Assume that the springs on the gliders are replaced by
magnets; glider 2 is at rest and a collision occurs when glider
1 is moving with velocity u

1
; the gliders stick to one another

and move off after the collision with some velocity v. It must
be remembered that this is an inelastic collision so that kinetic
energy is not conserved.

Unless the answer given below results, an error has been made in
either concept or mathematics or both.

v = 1/2 ul
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COLLISIONS

TERMINAL OBJECTIVES

7/1 A Analyze a two-body collision problem in terms

of the impulse mentum theorem.

7/1 C Apply the principle of conservation of momentum

to the solution of problems involving inelastic

collision.



GRAVITATION



The subject of gravitation and the Cavendish apparatus used to

determine the value of G is thoroughly discussed in most college

texts. The objective of this paper is a matter of highlighting

aspects of the Law of Universal Gravitation which often cause

confusion, and enriching the text material by adopting a some-

what different Toint of view.

(Figure 1) Students often are guilty of paying too little

attention to the rigorous implications of the verbal statement of

the Law of Universal Gravitation and its mathematical counterpart.

The word "object" implies a real body having definite dimensions

and mass. How does one measure the distance between such bodies?

If the object is perfectly symmetrical, the distance r is measured

between geometric centers but when any degree of asymmetry exists,

the measurement must be taken between the centers of mass of the

respective objects. It should be observed the statement refers to

mass, not weight, and the proper units must be employed if numerical

results are to be meaningful. To use the law with MKS units, the

masses must be expressed in kilograms and the distance of separation

in meters; the force of gravitation F will then come out *n newtons.

The symbol "G" represents the constant of proportionality and is

6.anerally referred to as the "constant of universal gravitation".

It mutt not be confused with "g", the symbol for gravitational

acceleration. While "g" is not a constant at all since it varies

from place to place even on our own planet, G is a universal constant --

it has the same value regardless of the observer's location in the

universe.



"Every object in the universe
attracts every other object with
a force that is directly propor-
tional to the product of their
masses and inversely proportional
to the square of the dstance
between their centers"

F G
M1 M2

r2
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(Figure 2) Students are sometimes puzzled by the fact that G has very
specific units of its own, and is certainly not unity while proportion-
ality constants in other equations are dimensionless and are assigned a
value of one. For example, in the development of Newton's Se:ond Law,
it is first stated that F is directly proportional to the product of m
an a using the proportionality symbol as shown. The proportionality
symbol is then replaced by an equals sign after inserting the constant
of proportioyality k. Finally, units are assigned to m and a (in MKS,
kg and m/sec respectively, k is allowed to equal unity and be dimension-
less, and the resulting force F made to assume the unit obtained from the
product of m and a). In MKS unity this product unit is kilogram-meters
per second per second or kgm/sec which is ye-named the newton. Thus

the newton is uniquely defined as a kg.m /sec and cannot henceforth be
defined in any other way.

If a value of 1 kg is ubstituted for each of the two masses m
1

and m
2

and a distance of 1 meter for r in the gravitational equation

F = G
ml m2

r
2

the force F does not. turn out to be 1 newton, neither numerically nor
dimensionally. ',is indicates that the numerical value of G cannot be
unity, nor can ,e dimensionless. The question then arises as to how
one may determine the value of G.

(Figure 3) Can G be mathematically evaluated? When the gravitational
equation is solved for G it takes the form shown in the figure. This

is of little help mathematically because the force F is still an un-
known despite the fact that the masses and the separation may be readily
established. Evidently, it is necessary to determine G by experimental
methods since the force F must be measured before G can be numerically
evaluated. For masses normally encountered in the laboratory, F is
extremely minute in magnitude. The apparatus required to measure it,
therefore, must be correspondingly sensitive. For example, the
gravitational force between two 10-g masses separated by as little as
0.1 meter is less than one-billionth of a newton!
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(a) F oC ma

(b) F = kma

(c) F = ma since k=1 if m is
in kilograms, a is
in m/sec and F is
in newtons.

FIGURE

G
M1 M2

Fr2

F IGURE



(Figure 4) This is a schematic diagram of the apparatus used by Henry
Cavendish in 1798 to measure the value of G. It is a torsional balance
of great sensitivity. Two spherical masses ml and m

2
at the ends of

the cross-bar of a rigid T-frame are free to move when a force is applied
to either or both if this force has a component at right angles to the
cross-bar. Mounted on the vertical leg of the frame is a light mirror,
the assembly being supported in space by a fine quartz thread or a
metallic ribbon. Two massive spheres, usually of lead, are placed near
the masses at the end:, of the cross-bar (m1 and m

2
). The entire system

is then given time to stabilize and come to complete rest. At this
paint, the light source is adjusted so that its beam is reflected from
the mirror to the scale; the scale reading is recorded. It should be
clear that this assembly constitutes an optical lever which magnifies
even a tiny deflection of the mirror so that it is readily measurable
on the scale. The two large masses (m

2
) are now in position one.

Very, very carefully the m2 masses are then moved into their respectiVe
second positions. This reverses the torque applied to the cross-bar
since the gravitational force due to the attraction of each m

1
and its

corresponding m2 been reversed in direction. The cross-bar begins
to twist on the suspension and, as might be expected, overshoots its
ultimate final position so that it go-s into damped oscillation like a
torsional pendulum. The time required for the system to stabilize once
more may be as long as two hours in a typical laboratory set-up. Once

it has again come to complete rest, the angle of twist is easily.
measured by observing the new position of the light spot and utilizing
the geometry of the system.
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(Figure 5) The relationship between G and the other relevant

quantities is shown in this equation. Its derivation is not

particularly difficult but it is based on information that the

student has not yet had so that it will be passed over at this

point. The symbol "k" represents the torsional constant of the

thread or ribbon and is experimentally found by methods that do

not involve gravity or gravitational forces. The symbol "L"

stands for the length of the cross-bar measured between centers

of gravity of ml masses. With all of the quantities now known

or measurable, the numerical value of G may now be obtained.

(Figure 6) Clearly G is not dimensionless as this development

indicates. The student should check the substitutions shown

carefully. The unit for k is the kg.m
2
/sec

2
; for 9 it is the

radian (dimensionless); for r
2

it is the meter
2

; for m
1

and

m
2

it is the kg; and for L it is the meter. The student is also

asked to show why these substitutions result in a final unit for

G equal to the ntm
2
/kg

2
.

As a final suggestion, the student is asked to substitute this

unit for G into the equation

F = G
ml m2

r2

to show that the force of gravitation F does turn out to be measur-

able in newtons.
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k e r2

m1 m2 L

k = tors i onal constant of
suspension thread

e= angle of twist

r =distance from center
of ml to center of m2

L = length of horizontal bar
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GRAVITATION

TERMINAL-OBJECTIVES

8/1 A Analyze gravitational force actions
between two particles in terms of
the gravitational field.
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At this point in his studies, the reader should be cognizant

of the importance of being able to determine the electric field due

to any distribution of charge. It is not unusual for this to be a

fairly difficult problem. To the contrary, however, if the charge

distribution has a high degree of symmetry, the problem may be

substantially simplified.

In the following material, an idealized case with a very high

degree of symmetry will be presented; that is, an infinite wire with

its charge uniformly distributed over its length. This is the same

as saying that the charge per unit length is constant over the wire.

The reader should keep in mind that there are two salient

points to his study of this problem. Firstly, the result to be

obtained has its own intrinsic importance. Secondly, but of equal

importance is the fact that this problem will give the reader an

excellent example of the applications of the integral calculus to

the solution of practical problems of physics.

In general terms, the procedure in solving this problem will

be to determine the electric field contribution from an infinitesmal

element of charge. Upon doing that, a summation will be taken over

all the elements of charge. This summation will require the use of

the integral calculus.

First, a general over view of the organization of the problem

will be given. Following that, the solution will be shown in con-

siderable detail.



In Figure 1, an infinite wire is represented by the vertical

line. The solution of the problem will involve calculating the

electric field E at point P due to the charge on the wire. It is

assumed that the charge on the wire is positive. The line a represents

the perpendicular distance from the point P to the wire. Vertical

distances along the wire will be measured by the variable 2. The

origin of measurements along y. will be the foot of point P, that is

the point at which the line a forms a right angle with the wire.

Now, if along the distance there is an element of length dy,

this element will carry a charge. Since the charge is linear over the

wire, a linear charge density A is defined. A will then be equal to

the charge per unit length of wire. Hence, the total charge on a

section of wire will be given by the product of the linear charge

density A and the length of wire being considered. Thus, the charge

along the element of length dy is A dy.

Going back to Figure 1, note that r represents the distance from

the element of length dy to the point P. Also shown in Figure 1 is the

angle 0, (which is the angle between a and r), and d 0 which is the

angle substended by the element of length at the point P. These are

the important variables and constants in the problem.

At this point, the reader should study the presentation above

very carefully!
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The following discussion revolves around Figure 2.

For a point charge, d E at a point is given by

1
dE -

4Tle
x2

where r is a unit vector from dy in the direction of P.

The next step is to consider the symmetry of the problem.

The following discussion will center about Figure 3.

Consider elements of length dy that are both above and

below the foot of perpendicular a. Each of these elements of

length will contribute to the electric field at point P. If

one takes components of d Eboth parallel to and perpendicular

to the wire, one sees that the components of E parallel to the

wire are of equal magnitude but are oppositely directed; thus,

these parallel components will cancel, and one will be left

with the perpendicular components only. The perpendicular com-

ponents will add. The obvious conclusion is that, since the

entire wire may be considered to be made up of such pairs of

elements, the electric field at point P must be in the x-

direction. The x- direction in this analysis is defined as

being parallel to line a, or perpendicular to the length of

the wire. Henceforth, consideration need be given only to the

x- component of dE, namely dE
x

.
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A study of Figure 4 clearly shows that

(1) dE
x
= dE cos 0

The equation for dE at a point is repeated in equation (2)

(2) dE =
Ady

2

-
r

4Re
o r

Upon substituting equation (2) into equation (1), one obtains

(3) dE
x

=
4Re

o r
2

1 Ady cos 0

Note that since this is a scalar equation, the vector notation

has been omitted.

Note that the angle 0 in Figure 4 will be taken as

negative. Angles clockwise from line a will be taken in the

positive sense. Note also that Figure 4 makes it clear that

cos 0
a

r

This relation will be important later, since equation (3)

involves three variables: 2_, r, and 0. In such a form,

equation (3) is not readily integrable. In order for the

integration to proceed, two of the three variables will have to

be expressed in terms of the third. The above cosine relation

will allow this to be done.

it r
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The method of making these substitutions is shown in Figure 5 using the
elemental triangle made by dy subtending an angle de at the point P. The element
dl is shown as a perpendicular dropped from one radius vector to the other. Note
that dl, dy, and the undesignated segment of r form a small right triangle. From
the above cosine, relation, r may be written as

r =
a

cos 9

From a study of the elemental triangle, it can be seen that

dl = rd9

dl
dy cos 9

r d
cos e

and

Thus

which is an expression foL dl and dy in terms of r and 9. Thus in the final
expression, r may be eliminated to yield an expression for dy in terms of 9
and a (a constant).

Continuing with the substitution, the identity above may replace dy
into equation (3) yields

But, recall that

which gives for dEx

1 Acos9 r ddE
x

=
411c

2
cos 9

o r

r

1 d9
41 2

0

a

cos 9

dE = d
x

1 Acos9
411c a.

0

Expressing this differential equation in integral form, one obtaihs

1
E
x a

A
2

cos d
4I1

co
1

Note that since A and a are constants, they appear outside the integral sign.
The integral is easily evaluated since the integral of cos 9 is sin 9. Upon
performing this operation on the above equation for Ex, one obtains

(4) E
x

m
1 A

4J1c a
(sin 9

2
- sin 9

1
)

o

Since 9
2
is 90

o
, sin 92' 1; and since 0

1
is - 90 °, sin 9

1
m - 1, then

equation (4) becomes

E
1 A

211c a
0
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Recall that A is the charge per unit length, and as such is proportional

to the total charge on the wire. Thus E
x
is proportional to the total

charge on the wire. Recall also that i is the perpendicular distance

from the point at which the field due _o the wire is being determined.

From this information some important conclusions may be stated

with regard to the field generated by this type of charge.distribution.

The field is inversely proportional to the first power of the distance.

This is different from the expressions that the reader has met before

which have all involved inverse square laws. it is important to note

that this is not an inverse square law but a simple inverse law.

The mathematical features of the derivation

of the field due to an infinite uniformly charged

wire are summarized in Figure 6.
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TERMINAL OBJECTIVES

10/2 B Answer questions and solve problems relating to atomic
models based on sperically symmetric charge distributions.

11/1 A Solve problems and answer questions on the relationship
betweem potential and field intensity.
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Some of the most important technological advances of recent

years have stemmed directly from our knowledge and understanding

of the way in which electrons in motion are affected by passing

through an electric field. This paper will be concerned with

a thorough analysis of the forces acting on a parallel beam of

electrons moving through a uniform electric field. The discussion

is based on the observations that can be made of the motion of

the fluorescent spot seen on the screen of a cathode ray tube.

(Figure 1) The cathode ray tube illustrated in this drawing

is a demonstation type in which electrons are emitted

thermionically from the heated cathode. Those electrons

which pass into the focusing cylinder are formed into a

parallel beam which is collimated into a thin pencil as it

moves through the aperture in the anode. The beam is then

injected into the space between the electrodes labeled

"deflection plates" and proceeds onward to the fluorescent

screen where it produces a visible spot of light. The

dimensions given for the length. 1 of each of the plates,

the distance L from the edge of either plate to the screen,

and the spacing between the deflection plates are representa-

tive values that correspond to the actual dimensions of the

elements of the tube shown in the diagram.
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(Figure 2 This is a close-up of the electron "gun" of the

tube showing the normal potential difference used between

cathode and anode. The anode is 250 volts positive with

respect to the cathode, hence electrons omitrod from the

cathode are greatly accelerated in the direction of the anode.

Once the electron beam has passed the anode, its motion

horizontally along the axis of the tube becomes uniform

since it is no longer in the space where the potential gradient

exists in this direction.

(Figure 3) Consider the electrons just as they are emitted

from the cathode. At this point they have a specific amount

of potential energy due to the voltage gradient. When they

arrive at the anode, all of this potential energy has been

converted to kinetic energy. Thus, as the beam passes through

the aperture, the amount of kinetic energy gained is equal to

the amount of potential energy lost in transit.

(Figure 4) Since the potential difference V between cathode

and anode is actually potential energy per unit charge, the

magnitude of the potential energy of the electron is thus

given as eV in which 'e is the charge on the electron. As

ahown above, this must equal the kinetic energy at the anode

ma indicated by the upper equation. Note that vh symbolizes

the"horizontal":component of the beam velocity at the anode, or

the component parallel to the axis of the tube. When solved for

v the result tadtcatect In the second equation is obtained. In

this equation.= is the mss of theIndividual electron. All the

quantities on dile right sure readiWaueasurable so that vh may be

easily evaluate4.

#16 - 2
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(Figure 5) This diagram suggests the next step in the analysis.

The electron beam approaches the deflection plates traveling

along the axis of the cathode ray tube. If no potential differ-

ence is established between the plates, the beam will proceed

through the space between them with zero deviation and produce

a light spot at the exact center of the screen. Should a

potential difference be applied to the plates, the resulting

electric field between them would then have to be taken into

account in determining the effect on the beam path.

(Figure 6) In this plan view of the deflection plates, assume

that the upper plate has been negatively charged with respect

to the lower plate, establishing an electric field having the

direction shown, that is, from the positive toward the

negative plate. Recalling that electrons are negatively

charged particles, the beam would experience a force opposite

that of the direction of the field. In this view, the force

on the beam would be downward, toward the positive plate.
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(Figure 7) As a result of this force, the beam would be

deflected downward and follow a curved trajectory while in

the space where the potential gradient exists. It is

important to observe that the beam path is a straight line

in the range from the cathode to the right edge of the

deflection plate, a parabola in the deflection area, and

a straight line once again after the beam has passed the

left edge of the plate. Note also that vh represents the

axial component of the beam velocity at all times after

the latter has passed the anode.

(Figure 8) Electric intensity E is defined as force

per unit charge. To determine the force on the electron

beam due to the electric field, it is merely necessary

to multiply force per unit charge by the charge on the

electron, or Ee. This makes it possible to express the

acceleration of the beam at right angles to the tube axis

in terms of electric intensity E, electronic charge c,

and the mass of the electron m.

(Figure 9) As indicated here, the transaxial acceleration

is given by Ee/m. With this relationship in hand, the

transaxial electron beam displacement may now be evaluated

by substituting in the general equation

displacement = 1/2 a t2

#16 -
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(Figure 10) The added equation presents this information.

The term Ee/m replaces a in the general statement, and

( k/v
h

)
2
represents the replacement for t

2
. The time in

this equation is the distance traveled along the axis ( k )

divided by the axial velocity of the beam (vh). Before

proceeding further, it will be necessary to determine the

transaxial velocity of the electron just as it reaches the

left edge of the deflection plate.

(Figure 11) The transaxial velocity at the point indicated

is obtained from the general relationship v = at which applies

to any body having a uniform acceleration a for a time t.

The deflection acceleratidn is Ee/m as indicated once again

in this figure. The time of flight in the deflection

region is Ovh .
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(Figure 12) Therefore, the transaxial velocity at the

left edge of the plate is given by this additional

relationship. Essentially, this implies that the electron

is moving with an axial velocity vh (uniform) when it

reaches the left plate edge, and with a transaxial

velocity vd at the same instant. To compute the dis-

placement of the fluorescent spot from its central

position as a result of the deviation, it is now

necessary to determine the additional transaxial dis-

placement of the beam as it travels from the left edge

of the plate to the screen. It should be recalled that

there is no transaxial force on the beam in this region;

its trajectory is a straight line.

(Figure 13) This additional deflection is the product of

the drift time (time form motion from plate to screen) and

the transaxial velocity vd (now uniform). The drift time

is simply L/vh so that the additional deflection is

merely L/vh x vd. Thus, information is now available

for finding the deflection of the beam while in the plate

region and also the deflection between the plate region

and the screen. The total deflection is, of course, the

sum of ehese.
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(Figure 14) This figure shows r. algebraic solution.

The total tjaIacement of the '',4eirrot on the screen

from its cenrral, undeviated poscum. may be found by

substituting in the final equatici, Shown- Tar the

dimensions, amid electrical values omen, the ddsplacement

of the spar turns out to be 4.2 iff2 meter mr 4.2 cm.

The measured value obtained in ±e a=rua1 experiment

was 4.3 cm, indicating excellent agreement with the

calculations.
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10/3 B Answer questions and soave graniEdll3ems relating

to potential and field -strength-



;



In general :fie., flux means a. "flawrg" or a "flow".

It is normal: .- .applied to a floid=o describe its rate

of mation-or#,0,0-imn of movement_ In physics, "flux"

is frequerttly. -.47,;n1-ferl to certain ampects of vector

fields but ratudre the ivtlica,Jault-of the flow of some-

thing. The ilttimete relattionri=of-the concept of

fly with that ::;:f flux makes logilcaL to begin a

discussion of trIns subject witk.a amid analogy.

(Figure 1) Imthis representati_xi of a river, it _is

assumed that title water is flowi ng. the general direction

of the obsermemmnd has attained .:a. steady state with res-

pect to This means that the water flowing past

aey Oxen -point ir the st-Team has die one velocity second

after &mama& Mbe river may then bwr-Intsualized as a

velocity fbeakihecause emery poivrir_it may be represented

hyaishicicy vecrrr.

OFigupP. 2) Uf certain velocities are selected arbitrarily

at IMECtfAME lomels, their.comparartmemagnitudes may be

asepresenterlAIF suitable vector armmws. Tbr simplicity, it

has been assumma dhait thelvolocitof :the-water near the

surface is leas than it is at gaieWOOCI*Oths, henet tWe

matmors at:th topare:Amrter ate. me identified with

'lamer case '71inehwhlie tirosa at Iiii.rhattom are Monger and

:Are symbolitzad.vith upper case
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(Figure 3)) A small area ak has been sketched into midstream

and has been placed in the low velocity stratum of the river.

This area is to be considered extremely small although it

is illustrated as enlarged for clarity. In accordance

with established coml./eat:hum, the vector that describes

this area is drawn perpendicular mo it-

(Figure 4) The flux through this area is, by definition,

the dot product of the velocity v and the area A. Since

this is (by definition!) a dot product, flux is a scalar

quantity. The equation far flux may also be written in

teams of the couponeuts of ;the vector. ur

.-vAzose

,where ,9 is the angle between the actmal velocity vector and

the area. It is reveSling to analyze the expaession'for

flux dimensionally. Velocity is length per mnt time and

area is expressed im lemgth units squared. The product

V end A is then

(L) 2 CI)
3

L) -
(T) (T)

Thus, flux has the dimen,s;loms of volume ger unit time and

represents the volume .of liquid flowimg

A per umBit time.

lin I 11 ft b gh the area
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(Figure 5) This diagram should help to clarify the

significance of the angle 9. The area through which

the flow occurs is again displayed with it descriptive

vector A at right angles to the surface; the velocity

vector v is shown as a horizontal arrow. If the velocity

vector were perpendicular to the area vector, there

would be zero flux since none of the liquid would be

passing through the area; that is, the flux is maximum

when the velocity vector and the area vector are parallel

to one another. For this condition, the angle 9 is zero

so that the cosine of the angle would be unity; as the

angle becomes larger, the magnitude of the flux diminishes.

(Figure 6) At this point, the area is increased by adding

a second surface A
2
so that the total surface is now the sum

of the original area and the newly added portion. It will

be assumed that the velocity through the newly added section

is vector V. The total flow through the enlarged area is

now equal to the sum of the flows through the separate surfaces.

(Figure 7) This sum relationship has been added to the

illustration. The original area is designated as Al an d

the added surface as A2. Although the foregoing development

many appear trivial, it does lead up to an important idea:

calculation of the flux through a surface involves the

process of summation; in the limit, this process becomes

one of integration.

#17 7 3
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(Figure 8) Consider a general case involving an arbitrary

4
surface in a velocity field. An element of area dA is arbitra-

rily selected on the irregular surface and the velocity at this

element of area is taken as v. By definition, the flux through

this element of area is

4 4
v.dA

(Figure 9) To find the flux through the entire surface, it

is merely necessary to sum up the individual fluxes through the

elemental areas over the entire surface.

(Figure 10) The correct expression for the required

integration is shown in this figure. The integral is a

surface integral and the integration process includes the

entire area.

(Figure 11) The discussion thus far has been based on a

velocity field in which the flux has been evaluated in terms

of volume of fluid per unit time through a given surface.

Since the same general approach may be utilized when an

electric field is substituted for the velocity field, in this

figure the electric field vector E has been used to replace

4
the velocity vector v. A similar pattern of thinking results

in the definition of electric flux through an element of

area as the surface integral of the dot product of the electric

vector and the element of area.

#17 - 4
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(Figure 12) A typical example is represented in this

figure. It is desired to calculate the total flux

through the designated area shown. The length L of

the rectangle lies alown the positive x-axis, and the

width of the rectangle lies in a plane that forms an

angle of 30° with the xz plane. In addition, it is

assumed that the electric field vector passes through

the surface in the positive y-direction.

(Figure 13) The electric field is not uniform. As

indicated, the electric intensity is given by the

relation E = az, showing that the magnitude of the

field is a function of the z-coordinate. Thus, E

will vary from zero at z = 0 to infinity when

z.= infinity.. All of this is preliminary information.
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(Figure 14) At some distance from the lower edge of the

rectangle, a thin strip of width dw and length L is selected.

The area of the strip is, of course, L dw. The next step

involves the representation of this small area by a vector

as illustrated in the figure, directed at an angle of 30°

downward toward the xy-plane. To calculate the flux through

this element of area, it is necessary to find the value of

E at this distance from the xy-plane.

(Figure 15) To determine E, the z-coordinate at the distance

w from x-axis must now be determined. A perpendicular is

dropped from dw to the xz-plane so that the z-coordinate of

dw is seen to be w cos 30°. Since the electric intensity E

is the product az, the intensity at the distance w is E =

a w cos 9.

(Figure 16) This figure shows the step-by-step development

of the expression for evaluating d(6 for the conditions

specified. The student is urged to study the sequence care-

fully until he is certain of complete comprehension.
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(Figure 17) The expression for -the flux is here shown

in integral form.

(Figure 18) In this solution; ttilaintegrand can be

simplified substantially as flnumm-that the final

expression for the flux is

_ 7
56 = L a cos, 301'

The procedure described in this-paper ±s sufficiently

general so that it may be applied.= vaLlons problems

encountered in the calculation of.flux.
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TERMINALaBJECTIVES

10/1 A Answer questions and solve problems

conceraffng electric field flux.





Gauss' Law is an extremely powerful tool for calculating the

electric field due to continuous charge distrlhutions. Two specific

configurations are discussed In this paper. Both of these involve

charge distributions possessing a high degree of .s.yumetry. The first

case to be examined concerns itself with the electric field due to

an infinitely long wire with a continuous charge distribution. If

the linear charge density on the wire is X, the length of the wire L

will contain a charge given by the expression

q = kL

where q is the total :charge on the length L. oEthelwire. It is

important to no that L igarat the entire length of the wire, but

merely a segment of an infinite4 long wire, and that for an infinitely

long wire, the field E is everywhere perpendicular to the length of

the wire. (Figure 1)

The second case to be cons-hammed. is the fieha the to an

infinite sheet of charge. In thdis case, one Is interested in the

electric field E at some distance from this infinite sheet of charge.

The figure shows a finite sheet of area A. As is .the case with the

longvire, this sheet ismerely a, portion of. an infinite sheet of

charge, The reader is asked to mecall that the surface density of

charge is the Aherge per unit areas, usually symbolized by a (sigma).

The total charge contained on the section of area A will then be given

by the expression.

q = GA

#18 - 1
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A very important point must be repeated here. In the following

analysis, the wire of length L and the plate of area A represent

finite sections of an infinite wire and an infinite plate respectively.

In the case of the sheet of charge, the reader should recall that the

field due to a positive sheet will always be directed perpendicularly

away from the plane of the sheet.

( Figure 2 ).

At this point the stratgey to be used in the application of

Gauss' Law will be discussed. This strategy is the same for each

case. The first step is to draw a closed symmetrical surface around

the charge. This closed surface is usually called a Gaussian surface.

The second step is to apply Gauss' Law which states that the flux

through any closed surface containing a charge q is given by

ci) =
6o

( Figure 3 )

The third step in the procedure makes use of the definition of

electric flux. This definition states that the flux is given by

cl) = .1d1

taken over any area A. In the problems to be considered here,

however, the use of Gauss' Law provides a symmetrical Gaussian surface

that surrounds the charge.

#18 - 2

1



STRATEGY

(1) Draw a closed symmetrical
surface around the charge

(2) GAUSS' LAW
(I) = q1E0

FIGURE

STRATEGY

(1) Draw a closed symmetrical
surface around the charge

(2) GAUSS' LAW
4)= q/E0

(3) 01) =I dA

FIGURE



( Figure 4 )

Because of the high degree of symmetry of the Gaussian surfaces,

the above integral in the definition of flux generally reduces to

EA.

( Figure 5 )

Returning to the infinite wire, the reader is reminded that the

segment of wire has a length L and a linear charge density X.

The problem is to calculate the electric field E at the point P, which

is a distance r from the segment of wire.

The first step is the construction of a symmetrical surface

surrounding the charge. A reasonable Gaussian surface for this charge

distribution is shown in figure 6.

This Gaussian surface is a cylinder whose axis coincides with

the axis of the wire. Let the cylinder have a radius r and a length

L. It would be in the best interests of the reader to note this

construction very carefully.

The second step is the application 'of Gauss' Law which may be

stated as follows: the flux through the Gaussian surface is
Co.

It has been shown that the total charge q on the length L of the

XL
wire is XL, thus the flux through the Gaussian surface must be .
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( Figure 7 )

The third step o- the strategy makes use of the fact that the

electric flux through the cylinder is the product of the magnitude of

the electric field E, and the surface area of the wall of the cylinder.

The reader may wonder why the top and bottom of the cylinder are

not considered. The reason for this is that since the electric field

lines are always perpendicular to the wire, they will always be

parallel to the end caps of the cylinder. If the lines of E are

parallel to the end caps of the cylinder, they do not pass through them

and therefore need not be included in the analysis.

( Figure 8 )

Since the flux equals EA, where A is the area of the cylinder wall,

the flux may be stated in terms of the radius of the cylinder or

(1) ¢ = 21irLE

Now all one need do is equate equation (1) with the definition of flux,

namely 4 = S-
E°

However, recall that the charge q on the length L of the wire is

q = AL

so that the equation for flux becomes

(2) 0 = AL
eO

Equating equations (1) and (2), one obtains

(3) 27ITLE = AL
eJ

Solving equation (3) for E yields

1.)
E 27eor

as the result.

The reader is reminded that this conclusion has already been

readied by another method. That method involved an integration. It

should be clear that the method using Gauss' Law provides a much simpler

approach to the problem than does the method of integration.
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( Figure 9 )

The second case will now be considered. In this configuration there

is a flat plate of cross sectional area A and charge density 0. Note

that this is a surface charge density, i.e. charge per unit area. The

charge on the plate is assumed to be positive. At a point P at any

distance from the plate, the electric field E is directed perpendicularly

away from the plate. The analysis to be used here is similar to the

one used above for the case of the wire.

( Figure 10 )

In the first step, a Gaussian surface must be constructed around

the plate. For a plate, the best Gaussian surface is a parallelepiped

whose end faces are parallel to the surface of the plate.

( Figure 11 )

For this step it is important to note that the total charge on the

surface is the product of charge density and area or

(4) q = cA

Recall that the flux is given by

(5)
=

eo

If equation (4) is substituted into equation (5) one obtains

(6)
0 cA

co

which is an expression for the flux in terms of surface charge density

and area. Note that this is the flux passing out of the Gaussian surface

drawn around the plate.
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( Figure 12 )

Because of the high degree of symmetry of the configuration, Gauss'

Law may be used to specify the outgoing flux. At this time, the exact

meaning of A must be clarified. Since A is a flat:plate, flux emanates

from both sides. Thus, the area of consideration is not merely the

area of one side of the plate, but the area of both sides. Hence, if

the area of one side of the plate is A, the total area for the emanation

of flux will be 2A. The expression for flux then becomes

(7) = 2 EA

Equating the two expressions for flux in equations (6) and (7), one

obtains

2 EA .=
aA

co
and the result for the electric field strength is

E =
7-Eo

The two examples described above involve highly symmetric charge

distribution in which Gauss' Law is clearly simpler than methods

involving integration. This is particularly true in the case of the

determination of the field due to an infinitely long wire in which there

is a uniform distribution of charge.

The reader should consider both these cases carefully, particularly

with respect to the strategy that has been used involving the three-step

solutions shown. Once these are firmly established in his mind, he

should then apply the same strategy to other symmetrical configurations.
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CALCULATION

OF E USING

GAUSS' LAW

TERMINAL OBJECTIVES

10/2 A Answer questions and solve problems using Gauss's

Law for cases of spherically symmetric charge

distributions.

10/2 E Apply Gauss' Law to charged bodies.
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Capacitors are found by the score in virtually every kind of electronic

device, performing many different and important duties. Yet, regardless

of the nature of the task handled try a spectttc muipmeitor, its usefulness

may be traced to its ability to store an electric charge and deliver this

charge in the form of a potential difference or an electric current when

called upon to do so. Capacitors have much in common with ordinary

mechanical storage devices such as jugs, bottles, and tanks. The capacity

of a bottle to hold fluid, for example, is in many respects analogous to

the capacitance of a capacitor. Perhaps the best way to introduce the

significance of electrical capacitance is to start with one such analogy.

Figure 1 0400NOW two ball eOti Ldaoltified as .A mmW tl each one has been

partial/.w laflafted. At if tret 'glance, there is a strong temptation to say

that B has the greater capacity for air because it has a larger inflated

volume than A. But if both balloons are now deflated, suppose that they

then appear as In Figur. Assumift that both are fabricated of the same

rubber material, it would then appear that A shaqld have the greater

capacity to hold sir because it is larger than B initially. This is quite

true, but the fact remains that it is quite easy to inflate the smaller

balloon to a larger inflated volume merely by using more air pressure on It

than on the other balloon. This, of course, was done in obtaining the result

in Figure 1. Balloon B, despite its smaller initial size, was inflated to

larger size than A simply by blowing harder on it. This is very much like

comparing a gallon jug with a quart bottle; although the gallon jug has a

greater capacity than the quart bottle, you can if you wish put a pint of

water into it so that it contains less water than the filled luart bottle

.with its smaller capacity. In short, the capacity of a balls= a bottle

is not at all the same thing as the actual quantity of air or liquid that

it may happen to be holding at any given instant.

#19 7 1



FIGURE

FIGURE



The analogy can be carried further. The same two balloons, A having a larger

capacity than B, are connected to a common source of air pressure through a

T-tube as shown in Figure 3. This arrangement insures that the same air

pressure will be applied to both balloons. Furthermore, let it be assumed

that when the balloons have expanded somewhat they then develop sufficient

back pressure to equalize the pressure of the source. At this point, inflation

will cease and the air system will be in equilibrium. The result is shown in

Figure 3. Here it is seen, as might have been anticipated, that the balloon

of larger capacity -- balloon A -- has grown to a larger size than balloon B.

The quantities of air in the two balloons have been designated as RA and QB,

respectively. It is also not unreasonable to guess that Q in either case

would be directly proportional to the capacity of the respective balloons.

If one has twice the initial size or capacity of the other than it ought to

be able to hold twice the quantity of air when the pressure is the same for

both. If the capacities are called CA
and CB, then the expressions shown in

Figure 4 would apply. Pressure, being constant, may be taken as the constant

of proportionality so that the equal-ratio form may be written as Q = PC. Or,

in the final form, capacity may be considered to be defined as the ratio of

quantity of air to the maguitude of the air pressure used to inflate the

balloon. Perhaps a better "feel" for the significance of this defining

expression can be realized by putting it this way:

(1) If balloon A can hold a 'greater quantity of air at a given

pressure than balloon B, it must have a correspondingly greater capacity.

That is, C varies directly with 'Q when P is constant.

(2) If a greater pressure is required to bring balloon B up to the

same volume of air as balloon A, then the capacity of balloon B must be

smaller. That is, C varies inversely with P when Q is constant.

Thus, capacity may be defined as quantity per unit pressure.
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The word "capacitance" rather than "capacity" is now in common use

in electricity. However, the capacity of a balloon is very closely

analogous to the capacitance of a capacitor. Two capacitors, C1 and

C2, are illustrated in Figure 5. Let it be assumed that the materials

and the method of fabrication used in the construction of both of

these were identical. Since C1 is physically larger than C2, it is

reasonable to conjecture that the former would be capable of holding

a larger electrical charge than the latter. Q is again used to denote

"quantity", this time quantity of electrical charge. Refer now to

Figure 6.

For simplicity, let C1 be twice the capacitance C2. If both are

charged from the same source of potential -- and here potential

difference is analogous to the air pressure used to fill the balloons --

then C1 should accept twice the charge Q that will pass into C2. So

in this case, potential difference is taken as the constant of propor-

tionality just as pressure was previously and the expression relating

quantity of charge Q, capacitance C, and potential difference V

appears as shown in Figure 6. Thus, since C = Q/V, capacitance may be

defined as charge per unit potential difference. Referring to the form

Q = CV, it is at once seen that the quantity of stored charge in a

capacitor can be increased by increasing the capacitance at constant

voltage, or by increasing the voltage at constant capacitance, or by

increasing both voltage and capacitance simultaneously.
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The simplest form of capacitor comprises a pair of parallel

conducting plates separated by a vacuum as illustrated in

Figure 7. The capacitance of this device is given by the

ratio of the charge on either plate to the potential

difference between the two plates. The remainder of this

discussion will be devoted to the derivation of an equation

in which capacitance for this simple capacitor is expressed

in terms of its dimensions A and d, plate area and plate

separation respectively.

After charging, each of the capacitor plates as shown in

Figure 8 has accepted a charge of Q. The left plate

(purely arbitrarily, of course) has a charge of -Q and the

right plate a charge of +Q. Since the area of each plate

is A, the charge density on the surface of each plate is then

Q/A. The lower-case Greek sigma is generally used to denote

surface charge density so, as in Figure 9, the density con-

dition is -a on the left plate and +a on the right plate.
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Considering only the positive plate for a moment, there will be

an electric field outside both surfaces having the general form

illustrated in Figure 10. This field is directed away from both

surfaces at right angles and has the magnitude shown. The

negative plate has a field of exactly the same magnitude.but

opposite in sign indicating that its field is directed toward

the conducting surface instead of away from it. Refer to

Figure 11.

In combination, the situation changes as follows: since the

field outside either plate is a net field due to two equal

fields oppositely directed, these outside fields cancel out com-

pletely. Between the plates, however, the fields due to each

plate are similary directed, hence the resultant field is the

sum of the two individual fields. This means that between the

plates the electric intensity is expressed as shown in Figure 12,

and is directed from the positive to the negative plate.
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Using this expression for the electric field intensity between

plates, the potential difference between the plates can now be

evaluated. Refer to Figure 13. Potential difference is the

integral of E.dl from zero to d separation. When this integration

is performed, the result is V = Ed. Then, when a/E
o

is sub-

stituted for E, the final expression in this figure is obtained.

Figure 14 shows the two equalities that can be used to progress

to the objective of this discussion. The first is a statement

of the potential difference V in terms of one dimension of the

capacitor, the distance separating the plates. The second

describes the value of the charge Q in terms of the area A of

either plate. This second equation is merely an algebraic con-

version of the definition of surface 'charge density so that it

is seen that total charge may be expressed as the product of

charge per unit area (sigma) and the total area.

Before going on to Figure 15, the student should make the

necessary substitutions in C = Q/V to obtain the final simplified

expression for C in terms of A and d. Figure 15 shows how this

is done, the final equation being

C
A

E
o d

Since c
o
is a constant -- it is called the permittivity of a

vacuum -- then the capacitance of any capacitor of the type

discussed here is dependent only on the area A of one of its

plates and the distance between the plates. In other words,

capacitance is not influenced by potential differences nor

circuit connections. A capacitor may be labeled by the manufacturer

purely on the basis of its dimensions, nothing else.
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CAPACITORS

TERMINAL OBJECTIVES

11/3 A Answer questions and solve numerical problems involving

the physical significance and units (basic and

submultiples) of capacitance, C.

11./3 D Solve problems involving various conductor-pair

geometries' and the corresponding capacitances.

12/1 A Solve discriptive and numerical problems involving

capacitors in series and parallel combinations.

(Note: All interconnecting wires are resistanceless).

12/1 D Predict the effect of adding a dielectric of known

dimensions and material to a vacuum capacitor in both

descriptive and quantitative situations.
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THE CAPACITOR IN ACTION

The subject of the discussion of this paper deals with the
factors that govern the capacitance of a capacitor. The simplest form
of capacitor consists of a pair of parallel conducting plates separated,
by an insulator or dielectric. The quantities involved in capacitor
action are the magnitude of the charge transferred to it, the electric
potential difference across its terminals, and its ability to store
electric charges or capacitance. In the demonstrations to be described,
a charge of constant magnitude will, be considered to be present in the
capacitor while variations of capacitance are studied in terms of
changing potentials.

(Figure 1) The reltsuively crude instrument shown in the illustration
resembles the basic instrument used in this discussion for the measurement
of electric potential. A metallically coated styrofoam ball is sus-
pended by means of a silk thread on a vertical metal stand held upright
on a thick plastic insulating stand. If there are no electrical charges
present, the ball hangs limply against the stand as in diagram A. When
a negatively-charged is brought into contact with the top of the stand,
some of the charges are transferred to the metal and become distributed
throughout the conductor. The conductive coating of the styrofoam ball
assumes a similar charge and is repelled by the stand. The extent to
which the ball swings outward might be measured.by the angle between
the thread and the stand; in its equilibrium condition, where the grav-
itational force and.electrical force are balanced, the angle might,
if desired, be calibrated in terms of the electric potential responsible
for the deflecting force. Transferring charge into the apparatus re-
quires that work be done against the charges already present and, since
potential is work per unit charge, the magnitude of the angle 9 indicates
qualitatively whether the potential is larger or smaller than it was
for some other value of 9.
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(Figure 2) The Braun type of electroscope shown in this illustration
is modeled after the simple arrangement just described. The active por-
tion of this instrument is the aluminum vane pivotedrear the center
of the heavy metal support bar. Connection is made to the vane and
support bar via a metallic path up to the aluminum terminal disc at the
top. Note the large plastic insulator which keeps the vane assembly
isolated from its surroundings. A metal ring called the shield surrounds
the vane assembly but is not in electrical contact with it. The heavy
metal base, electrically connected to the shield, completes the Braun
electroscope. The lower portion of the vane is made very slightly heav-
ier than the upper portion so that the vane normally rests in a vertical
position when the electroscope is uncharged.
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(Figure 3) Diagram A shows the electroscope in its neutral or uncharged
condition with the vane vertical. In Diagram B, a negatively charged
rod is brought into contact with the disc at the top of the electroscope,
a part of the charge of the rod is transferred to the vane assembly so
that both the support bar and the vane become similarly charged, and
they repel once another. The couple acting on the vane then causes it
to rotate to a new equilibrium position. The angle between the vane
and the support bar may then be used as a measure of the potential dif-
ference between the vane and the shield. The shield is normally con-
jsidered to be at the zero reference potential, or ground potential since
it if; in electrical contact with its environment. Thus, when reference
is made to the potential on the vane assembly, it is to be understood
that this potential is being observed or measured with respect to the
shield. In the state shown in Diagram B, the electroscope is said to
be negatively charged. A positive charge may similarly be transferred
to the instrument by bringing it into contact with a positively charged
body. When an electroscope is to be charged either positively or neg-
atively, it is customary to start with the instrument in its uncharged
state.
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(Figure 4) An insight into the mechanism of charge transfer may be
gained by observing what happens when a charged body is brought into
proximity with an electroscope already carrying a similar charge. In
this illustration, the electroscope is initially charged negatively
while a negative rod is brought close to the terminal disc. The initial
negative charge potential is seen to be related to A in Diagram A, with
negative charges distributed more or less uniformly over the din and
vane assembly. Upon the approach of the negative rod, negatiye charges
from the upper disc are forced downward into the vane assembly. This
increases the charge density and hence the potential of the vane so
that (4' now represents a measure of the new potential. Charges are
not transferred in this case unless actual contact occurs; they are
merely redistributed as a result of the increased electrical forces
brought into play by the nearness of the heavily charged rod.
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(Figure 5). Here a positive rod has been brought close to the disc of
a negative electroscope. In this case, negative charges are drawn away
from the vane assembly by the coulomb attraction force causing a decrease
in charge density in the vane and consequently a reduced potential. This
is illustrated by the smaller value of 9'. A charged electroscope used
as described in this Figure and in the previous one not only indicates
the presence of charge on the approaching body, but also its polarity
and comparative magnitude. As mentioned previously, voltage may be
measured in terms of degrees of angle of deflection.
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(Figure 6) A charged electroscope may be discharged or rendered neutral
by touching the terminal disc with the finger. The conductivity of the
human skin surface is sufficiently good to permit charges to be trans-
ferred to the body. Most of the charges on the Braun instrument will

transfer to the human body, depleting the electroscope almost completely.
Hence, the vane angle drops to zero when this is done. This method is
universally used to discharge an electroscope in order to ready it for
forthcoming tests.
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(Figure 7) The capacitor shown in this illustration is the simplest type,
consisting of two parallel metal plates separated by air as a dielectric.
The plates are isolated from the environment by an insulating stand which
supports them in position. The left plate is connected by a wire to the
terminal disc of the electroscope; the right plate is connected by a
second wire to the shield and base assembly. The capacitor is then
charged by stroking the left plate with a negative rod, positive charge
of equal magnitude being induced in the right plate and in the shield
assembly to which this plate is connected. The potential difference
between the vane and the shield produces the deflection 9.

Equation 1 expresses the capacitance of a capacitor as the
product of the dielectric constant K, the permittivity of empty space co,
and the ratio of plate area A to plate separation d. The Braun electro-
scope is now to be used to test this equation qualitatively. Equation 2
is a "tool" relationship which helps to confirm the results obtained by
varying the quantities in Equation 1: the potential difference V between
the capacitor plates is equal to the charge magnitude Q divided by the
capacitance C. Note .hat the diagram indicates the separation distance
d to be relatively large. In the next step, this distance is to be re-
duced while the vane deflection is observed.
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(Figure 8) When the separation distance d is decreased as shown, it is
at once observed that the deflection angle is correspondingly decreased
with 0' being much smaller than 0. The equations predict this as indicated:
when the initially-large d is reduced, the capacitance C must increase
since C is inversely proportional to d. As a result, as shown in the
second equation, the potential difference V between the plates must dimin-
ish because V is tersely proportional to C. Thus, the deflection angle
goes from a large value (0) to a smaller ,,clue (9').

In the next step, the seuaration distance d is to be held con-
stant while the plate area is raised from a small to a Telatively large
value.

61



The Changes

(1) C = KE0i-Air

(2) V = 3MEM/Opp

SMALL
d

contact

C KE0
A
d

hence 0 8

V 111

C



(Figure 9) As Diagram A shows, the initial area is relatively small;
this has been indicated in Equation 1 by means of a small "A"; the
value for 9 obviously depend ovi he specific area, plate separation,
and charge. In Diagram B, the has been increased substantially,
again causing the deflection at. to decrease. One may again reason
predictively from the equation: As A-becomes larger, C must also become
larger because C is directly pr)portional to A. Again, as C grows, V

must shrink correspondingly --- an inverse proportion exists here as has
been stated previously. Thus, if V diminishes, the vane deflection must
also decrease so that 9' is again smaller than 9.

Finally, the dielectric constant may be changed and the consequent
change of capacitance noted.
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(Figure 10) The plate area A and the separation distanced are both to
be held constant in this step. Diagram A illustrates that the deflection
angle A is relatively large so that a reasonably high potential is seen
to exist across the capacitor plates. The air between the plates is -

serving as the dielectric. A sheet of polyethylene plastic is now in-
serted between the capacitor plates as in Diagram B; the deflection angle
again decreases, indicating as before that the capacitance has increased.
Equation 1 then shows that the insertion of the plastic material must
have increased the dielectric constant K in order to increase the capac-
itance of the capacitor since these two quantities are directly proportion-
al.

Equation 1 is thus verified qualitatively.

Consider a simple functional problem: a 12 microfarad cap-
acitor of given dimensions and materials is restructured in such a
way that its dielectric constant, plate area, and separation distance
are all tripled in magnitude.

Don't turn to the next page before answering this question:
what capacitance will the capacitor have after these changes have been
made.

The solution follows:

12 ufd = Ke
0
A

(initially)

? ufd = (3K) E
AJA (after restructuring)
Ta-

36 ufd = new capacitance.
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THE CAPACITOR
IN ACTION

TERMINAL OBJECTIVES:

11-1.080-00

Solve descriptive and numerical problems involving
capacitors in series and parallel combinations.
(Note: All interconnecting wires are resistanceless)

11-1.083-00

Predict the effect of adding a dielectric of known
dimensions and material to a vacuum capacitor in
both descriptive, and quantitative situations.
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We are now going to consider two rules that were first

formulated by a physicist named Kirchhoff. These rules

enable one to solve circuit problems, particularly in the

case of complicated circuits. Such a circuit can be

found in Figure 1.

FIGURE 1

1

The reader should note that the figure c43 ntains two

1

seats of emf and several resistors. A typica
1

problem

might ask that the current through each resistor and the

potential drop across each resistor be calculated,

assuming you were given the emf's and the vaues of the

resistors. Many problems of this nature can be solved

by the method of equivalent resistors, but this method
$

leads to very cumbersome algebraic exercises. Kirchhoff's

Law can be of enormous help in this area, as it can

eliminate much of the time consuming algebra.

The reader should direct his attention to Figure 2.
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FIGURE 2

Before stating a formal definition of Kirchhoff's Laws,

two definitions are in order. The first term to be defined

is a junction. In Figure 2, the point that is labeled

branch point or node is called a junction. That is, the

three terms; branch point, node and junction all refer to

the same idea. This author will refer to this point as a

junction. A junction is defined as any point in a circuit

at which the current can divide. For example, in Figure 2,

the current i
1
divides at the junction into the currents

i2, i3, and i4. There is a very convenient convention for

designating current entering the junction and current

leaving the junction. Current entering .a junction is taken

to be positive and current leaving the junction is taken to

be negative. Thus for the case shown in Figure 2, it would

be taken as positive and i2, i3, and i4 would be taken as

negative. Now let us give our attention to another concept,

which is illustrated in Figure 3.
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FIGURE 3

This new concept is the loop. A loop is any closed

conducting path in a circuit. In Figure 3, each of the

dotted lines outlines a loop of the circuit. With these

definitions, Kirchhoff's Laws may beformulated. The

first of these rules is shown in Figure 4.

FIGURE 4

Kirchhoff's First Law may be stated as: At any junction,

the algebraic sum of the currents must be zero. The question

arises, "What does this mean from a practical viewpoint?" It

means that the total current entering the junction must be

equal to the total current leaving the junction. This rule

may also be stated as: There can be no piling up of charge

at the junction. The second of Kirchhoff's Laws is shown in

Figure 5.
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1. AT ANY JUNCTION,
THE ALGEBRAIC SUM
OF THE CURRENTS
MUST BE ZERO.

FIGURE

1



FIGURE 5

The second of Kirchhoff's Laws states that The sum

of the changes of potential encountered in making a complete

loop is zero. More explicitly, one starts at any point in

the loop, traverses the loop in an arbitrary direction, and

algebraically sums the potential differences met in

traversing the loop. Kirchhoff's Second Law requires that

this sum be zero.

Now that the two Kirchhoff rules have been stated,

they may be applied to the simple circuit shown in Figure 6.
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KIRCHHOFFS RULES

2. THE SUM OF THE
CHANGES IN POTENTIAL

ENCOUNTERED IN MAKING

A COMPLETE LOOP IS ZERO.

FIGURE



FIGURE ,6

In the circuit shown in the figure there are two seats

of emf, El = 24 volts and E2 = 12 volts. In addition, there

are three resistors of 8 0, 4 0, and 6 0 as shown. The

author advises the reader to sketch the circuit of Figure 6

so that he may later follow the solution to this problem on

his own.

The following problem is presented as an illustrative

example: Determine the current in each of the resistors of

Figure 6.

FIGURE 7

The first step in a problem of this type is to note

the number of loops in the circuit. Inspection shows that

this circuit has two loops. There is a loop on the left

hand side which is assumed to have a clockwise current i1.

There is also a loop on the right hand side which is

assumed to have a clockwise current i2. The next step

in the solution is shown in Figure 8.
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FIGURE 8

If Kirchhoff's Second Rule is. applied to the first

loop, one obtains as a voltage equation

El = i
1

(8 St + 6 n) -i2 (6 n)

Introducing the known value of E1 (24 volts) this equation

becomes

24 = i
1

(1452) - i
2

(6 n)

See Figure 9.

FIGURE 9

Attention is now given to the second loop. Here

Kirchhoff's Second Rule yields

E
2

i
2

(6 P + 4 n) -i1 (6c)
1

Replacing - E2 by the known value of 12 volts, this

equation becomes

- 12 = i
2

(10 - i
1

(6-0)

At this time the reader should be asking himself why the

voltage E2 is written as minus 12 volts. The equation,

however, is correct as written. Please turn to Figure 10.
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FIGURE 10

The problem has been reduced to a simple pair of

sfmulta' .:us equations in the unknowns i1 and i2. If

Lite reader wishes to solve these equations by himself

he may do so and then proceed to Figure 11. If not,

proceed to Figure 11 at once.

FIGURE 11

As can be seen from the figure, the results of

solving the simultaneous equation are

= 1.62 AMPS

i
2
= -.25 AMPS

The negative value of i2 merely inc..cates that the

wrong direction was assumed for i
2.

Accordingly, the

current diagram must be modified as is shown in

Figure 12.

FIGURE, 12

Referring to the diagram of the circuit, i1 gives

the current in the 13 ohm resistor and i
2

gives the

current in the 4 ohm resistor. Thus the current in

these two resistors is determined. Please go on to

Figure 13.
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FIGURE 13

It remains for the current in the 6 ohm resistor to

be determined. This can be accomplished by an application

of Kirchhoff's First Rule, the rule which defines junctions.

Recall that Kirchhoff's First Rule states that: the

algebraic sum of the currents entering a junction and the

currents leaving a junction is zero.

FIGURE 14

Figure 14 shows the corrected directions of the

currents 1 and i2. Let the current through the 6 ohm

resistor be designated by i. According to Kirchhoff's

First Rule,

i
1
+ i

2
+ i =0

If the currents entering the junction are taken as positive

and those leaving the junction are taken as negative, this

current equation becomes

1.62 AMPS + .25 AMPS -1 = 0

or i = 1.87 AMPS

Thus the problem has been completed by finding the current

in the 6 ohm resistor to be 1.87 AMPS.

It is important to note that the two loops with which

the problem was begun were rather arbitrarily chosen. The

author now wishes the reader to solve the same problem

using a slightly different approach. Naturally, the same

result is expected. The diagram for this exercise can be

found in Figure 15.
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FIGURE 15

The two loops that should be used are outlined in the

figure. The current through the 8.ohm and 6 ohm resistors

is iv The current through the 8 ohm and 4 ohm resistors

is i2. It is.important to note that i2 passes through both

seats of emf... This problem may be solved using the same

technique ass used in the illustrative example giVen

above. For ,same additional hints see Figure 16.

FIGURE 16

Using Kirchhoff's First Rule, an equation may be

written for the i
1

loop.

-El = i
1

(6 n + 8 n ) -i2 (8 n)

Proceeding in the same way for the i2 loop yields

E
1

- = (8 n + 4 n) -i1 (8 0

-Upon substituting the given values of E1 and E2 into these

;equations, there results two simultaneous equations in i1

:and i2. Whenithis pair of equations is solved, Kirchhoff's

First Rule mEry be applied to yield'eNe current in each of

the resialteMIL.
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KIRCHH FF'S
RULES

TERMINAL OBJECTIVES

13/1 B Answer questions relative to the methods of

application of Kirchhoff's Current Law to

electrical networks..

13/1 D Apply Kirchhoff's Laws to the solution of

numerical problems ranging from simple to

more complex multiloop networks.
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The concept of a vector field is normally first encountered in mechanics

when gravitation is studied: any of the phenomena involving gravitation

that are described in terms of a force acting at a distance can also be

analyzed by means of the field approach, often more successfully. The

same is true of the forces involved in electrostatics: although one may

speak of the attraction and repulsion of electric charges as forces acting

over a distance, the description can almost always be enhanced by introducing

the concept of the vector field, in this case the electrostatic or electric

field.

The third type of vector field is the subject of this exposition, namely

the B-field or magnetic field. Since there is a strong similarity among

the methods used to detect and measure all three of these vector fields, it

would be profitable to review these methods as applied to gravitational and

electrostatic fields before starting the analysis of the B-field.

Man is equipped by Nature to detect the presence of a gravitational field.

He feels the force exerted on his body and objects he handles by the inter-

action of these masses with the gravitational field. As illustrated in

Figure 1, he defines and measures the field with the heir of a simple

device such as a scale or balance and a standard mass. According to con-

ventions of scientific mensuration, the magnitude and direction of the

force of gravity acting on a one-kilogram mass provides all the information

required to describe the intensity and sense of the gravitational field,

the intensity is defined as nothing more than the force per unit mass.
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The electrostatic field presents a different problem because

special instruments are required to assist with detection and

measurement. Among the simplest of these is a very light,

suspended object such as a pith ball and some form of electro-

static generator. (Figure 2). A pith ball is suspended from

an insulating thread and given a positive charge by touching it

to a glass rod that has been stroked with silk cloth. The pith

ball is then brought near the electrostatic generator and the

force acting on the pith ball observed by noting whether it swings

toward or away from the source of the electrostatic field. A

measure of the electric, field around the generator is provided by

the direction and magnitude of the force on the ball. The intensity

of the electric field is then defined as the force per unit charge.

Thus, in both of these cases, we describe the field in terms of the

force acting on a unit "something" -- a unit mass in one case and

a unit charge in the other.
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As might be anticipated, detection and measurement of the B-field

presents problems of its own. If, as described in Figure 3, a

positively charged pith ball is suspended in the magnetic field

produced by a very powerful magnet, no force appears to act on

either the magnet or the pith ball. If the pith ball is swept

rapidly through the magnetic field, however, a force does make

itself evident: the pith ball is observed to be deflected side-

wise with respect to the direction of its motion through the

field. The most noticeable affect is obtained when the ball

passes between the poles of the magnet moving at right angles to

the axis joining the pole faces. This is illustrated in

Figure 4. The pole axis is a straight line (shown dotted) joining

the centers of the two flat pole faces: the pith ball is suspended

immediately below the pole axis with the thread intersecting the

axis as shown. When the magnet is moved quickly downward causing

the pith ball to pass perpendicularly through the field between

poles, the pith ball is seen to deflect horizontally toward the

observer.
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field of the magnet in Figure 4 is zrommingly concentrated between

c poles and is ariottrarily assigned Y!>ne__JOItcrectian from the N-pole

ward the S-pole within the gap betwee- 1,0m-m. Please refer to

figure 5. The field direction is shown a_r- :Dim vector-arrow B from

ight to left, that.. is, from N to S. Th, r1.4-Ative:vSlocity of the

pith ball in the :field is indicated by the -vectom-artmw v, and the

force resulting from the notion of the zharged hardy through the

magnetic field is shown by the vector am-row F..

From a purely descriptive point of view, it is important to observe
-.-

that the force F is perpendicular to the pinl-re containing vectors v
-011.

and B. In this case, F is directed toward the observer but if either

v or I: had been oppositely directed, the sense of F would be away from

the observer but it would still be perpendicular to the v-B plane.

Analytically, it should be apparent that the force F is related to

and iby the cross-product of these terns. If the upward velocity

rotated into B, and if the resulting motion of a right-handed

screw is visualized, it is at once seen that the screw would progress

at right angles to both v and B out of the paper toward the observer.

Thus far, then, it is seen that a force does :act on a charge in a

magnetic field BUT ONLY IF THE CHARGE IS MOVING WITH RESPECT TO THE

FIELD. It can be demonstrated furthermore that this force will exist

only if the relative action of the pith ball with respect to the

Wield has a component-perpendicular to the field. When the charge

=moves parallel to thelield, say along the pole axis, no force can

detected. In any-case -- if the_Eorce can be detected ---it is

_adiways found to beTenpendicular to/thke plane containing the

motor and the B vecOmr.
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Another revealing experimental set up PN/ox.1 in Figmre 6. An
evacuated glass bulb containing two elP..---r-rovies, 1-mlled a Crooke's Tube,

is connected to a source of high voltage- men power is applied, a
stream of electrons made visible by a ...finort. screen in-the tube
(not shown in the diagram) passes in aarra4-gh .Nine frua the negative

to the positive electrode. The electron stream is indicated by the
broken line inside the Crooke's Tube. a tilapnet is planed behind the

tube from the observer's point of view,-noriaminally oriented so that
-the N-pole of the magnet points toward =me obsoenrwer, the electron
stream is seen to be deflected sharply mann:L. Mae deflected path is
represented by the dotted arrow in the -±ilmorre.

The electrons are moving from electrode ,..- .,Taiactrode C, from left to

right in this case: the direction of the 3-Cield is perpendicular to
the plane of the diagram and its sense is ubmard toward the observer
away from the N-pole behind the tube. Taa5, Mile Br-field is perpendicular
to the velocity vector of the electron srletilik. The deflection of the
stream provides evidence that a force is,emorted on each electron in an
upward direction, perpendicular to the plow tc,ontaining the v- and 4--
vectors. This result is in descriptive apmeement with the observations
of the previous experiment.

There is a significant difference, however, betweep the two demonstra-
tions: in the first, a positive pith bail:mowed with respect to the
B-field but in the second the moving chat gee were negative. When one
tries to rotate -47into B in this case, onesinds that the sense of the
predicted force should be downward rather-tnamnpward. Evidently, since
the various vector rotation rules and the:moles governing the directions
of forces on charged particles in fieldsame based on the motion of
POSITIVE CHARGES, it is necessary to revise-die apprnaCh to the problem
when negative charges are involved. This t ratthereasily done as
hollows:

Theory and experiment demonstrate that an -citkerirrnm-mmving from left to
right as in our example has exactly the same erect as a positive
charge of the same magnitude and mass moving in the opposite direction,
from right to left, Thus, to correct the -vector picture when dealing
with negative charges it is helpful to redraw the 41agram as shown in
Figure 7. Nothing has been changed except the direction of the
dtarges, these having been changed to posinrons Instead of electrons.
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Amx: the rule for cromis- Trod is may be .applied without error. When 17
=mated into B, the direction of pnagress of the right-handed screw
..unnia-rd as it shodiai .'hE. 'This Is diagrammed in Figure 8. The velocity

Noencomr w is directed the left, the :field vector is directed out-
warni toward the obser- and the restfitin7 force F is upward.

S1r4. .±nrce acting on =E-ir,E ; positively chartgec particles, as indicated in the
-F-h5urre, 'nas a magmitru ...ven by the prodm,t q v x B in which the velocity
vmeimor v is perpendir,wipi- to the field v.eL.-ror B.

Vile ;units for B are reedilly obtained f= the expression

v B

:;111;cring this equatiat-T for B, that is

E - F
q v

mad-then substituting s units in the tE ten- :at the right:

newtons

coulombs meter
second

A osmium* per -se is called an ampere,. hence

B = newtons
. ampem meter

The quammity B 'may called the 111411 iZZIM of a magnetic field=
magnetic inductitamr. stsriff flux density. If ttiris material has not already
beemr,introdnevcit, I= will later he shown tdr.A.Lanother unit connected with
Thercancept catff flimr-Adiensiiitty is frequently d. That is,

B - square meter
webers

And fitaalnly- tiMat d %weber per square meter- is now called the tesla.
"Mese faqir tameits .=Trr onmpietely equivalentLand one may be substituted
/sr ene other at will- For record purposes:, these units are summarized

algure 19.
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TERMINAL OBJECTIVES:

14/1 B Answer coalltative 'questions relating to the

magnetic indectimt vector- B.



FORCE BETWEEN
PARALLEL
CURRENT-CARRYING
CONDUCTORS



If two wires are freely suspended very close to one another, and if

a current is then passed through each of the wires, a force of at-

traction or repulsion can be detected between them. The direction

of the force is a function of the relative current directions; if

the current directions are the same in each wire, the conductors

will attract one another but if the direction of the current in one

of the wires is reversed, the force changes to repulsion. Please

refer to Figure 1.

Analysis-of the electromagnetic fields that surround each conductor

indicates that both the magnitude and the direction of the force

can be theoretically predicted. Let us assume that the wires

shown in Figure 2 are connected directly to a source of emf, in

series with one another, so that the currents are opposite in

direction but equal in magnitude.

The current in wire a is directed downward while that in wire b is

upward. In order to make the analysis easier to perform in two

dimensions, imagine that both wires have been rotated about a

horizontal axis so that they present the picture shown in Figure 3.

The wires now appear in cross-section as small discs; wire a

carries a dot to indicate that the current is directed toward the

observer and wire b contains a cross to show that the current in

this wire is directed into the plane of the paper, away from the

observer. Considering wire a alone for the moment, as in Figure 4,

the B-lines surrounding it may be drawn as concentric circles to

conform with experimental facts obtained from Oersted's Experiment.
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Applying the right-hand rule for wires (Oersted's Rule),

the thumb of the right hand is pointed in the direction

of the conventional current so that the fingers then

encircle the wire in the direction of the magnetic field.

For this case, the B-lines are counterclockwise in

direction as indicated in Figure 5. At a point r near

the current-carrying wire, the line of magnetic in-

duction is tangent to the circle of the B-line surround-

ing the wire.

The magnitude of the field at point P is given by

Ampere's Law and may be written as indicated in Figure 6,

in which Bp is the magnitude of the field, u
o

is the

permeability constant, is is the current in wire a, and

r is the distance between the center of wire a and point P.

#24 - 2



1

FIGURE

ti
Dp

iso jet
Bp = 271r

FIGURE



To review another concept briefly, please refer to Figure 7.

In this diagram, a wire is immersed in a magnetic field; the

wire carries a current into the plane of the diagram. The

source of the magnetic field is not indicated, nor is this

information needed to analyze the problem. The B-lines

from this unknown source are directed upward in the plane of

the paper as indicated. Applying the Palm Rule to determine

the direction of the force acting on the current-carrying

conductor immersed in the given field, the fingers of the

right hand are placed so that they point in the direction of

the B-lines while the extended thumb points in the direction

of the current. The direction of the force on the wire is

then given by the direction in which the palm would exert a

thrust if the hand were used in the normal manner. In the

example given in Figure 5, the direction of the force would

be that shown in Figure 8, namely to the right as viewed by

the observer.

The Palm Rule may always be used in this way and will be

found to be a great help in analyzing this kind of situation

and others similar to it.
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The magnitude of the force on the current-carrying wire is given

by the relation shown in Figure 9. Thus, both the magnitude of the

force and its direction are determinable for the example given.

Please refer to Figure 10; this is reiteration for review. Also

refer to Figure 11.

These ideas may now be combined to determine the nature of the force

in a specific case; that is, to determine whether to expect attraction

or repulsion when the current directions are known. Working with

conductors carrying oppositely directed currents as in Figure 12, it

can be readily shown that the force is one of repulsion in the follow-

ing manner.

The line of magnetic induction at wire b due to the current in wire

a is labeled B
a

. Applying the Palm Rule to wire b, it is seen that

the force on this wire is directed to the right away from wire a as

illustrated in Figure 13. The magnitude of the force is given in

the same Figure. In this relationship; Fb is the force acting on

wire b, i,
D

is the current in wire b 1
b

is the length of wire b, and

B
a

is the magnetic induction due to the current in wire a.
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Exactly the same process may be forimatil u&L.Z.Zuid the force acting

on wire a due to the current in wirelxiamow-anNgmetic induction

produced by the current in wire b. lOsetm1100t 'uTtamu4 rule is first

applied to wire b; this demonstratesichartimegfr-line am wire a is

directed upward. Then the Palm Rule isagplied to wire a, showing

that the force on this wire acts to the ±eft away from wire b.

The direction and magnitude of this force is diagrammed in Figure

14. The student should confirm this fax himself.

Thus, the wires repel each other. From Third law considerations

alone, one may conclude that the force_on wire a must equal the

force on wire b since they form an anion- reaction pair. The fact

that the forces are equal may also be shown directly as in Figure

15. In the first step, the magnitude of-girls given in equation

form. In' the second step, B
a

has been replace&-ILTits equivalent,

i.e.,iuoia/27rr. Both sides are then distigedby the wire length

to yield the force per unit length in the_third step. The

remainder is self-explanatory.
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In summary, as presented in Figure 16, the force between

current-carrying wires is one of REPULSION if the currents

are OPMSI Y DIR.".; the force is ATTRACTION if the

currents hams the SAME:DIRECTION. The force per unit

length on either wire for equal currents and equal lengths

Is given by

T/1 =poi
2
/27rr
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TERMINAL (OBJECTIVES

14/3 A Describe the magnetic lield around a.:stra*gbt-current-

carryt9g conductor..

14/3 D Prove that the force between wires a and b in

the diagram is an attractive force, the magnitude

of the force on either wire being given by (equation).



S. LAW APPLIED
TO .A LONG

STRAIGHT ..CONDUCTOR



Like many other great generalizations in physics, Ampere's Law begins
to acquire meaning only when it is related to phenomena that occur in
the physical world. Using the accepted symbolism of physics, Ampere's
Law may be stated in the form illustrated in Figure I.

Put into words, one may read this as: "The line integral of the magnetic
induction B around any closed path in a magnetic field is equal to the
net current across the area, multiplied by a constant of proportionality,

0

Unfortunately, the verbal expression of Ampere's Law may be just as
obscure to many readers rs the mathematical statement. It can be clari-
fied to a great extent, however, by considering a specific example in
which the quantities contained in Ampere's Law can he reasonably and
intelligently included.

Referring to Figure 2, imagine five conductors passing through the
plane of the diagram perpendicularly in more or less random positions.
The wires appear as small discs carrying either a cross or a dot to
indicate current either into the plane'of the paper or out of it,
respectively.

Figure 3 shows the five conductors enclosed in a continuous "path" which
is to serve as the path for the line integral.

In the next step (Figure 4) a randomly chosen point, P, has been in-
serted in the closed path. The two vector arrows originating at P are,
respectively, the magnetic induction vector B pointing in any random
direction and an element of path length dl that is tangent to the
curve of the path at point P. Since the conductors passing through the
area circumscribed by the closed path must produce a magnetic field in
the plane of the diagram, then the B vector must have a specific magni-
tude and a specific direction, the latter designated by the angle
between it and the dl vector, that is, angle 9. The net current
threading through the enclosed area is merely the algebraic sum of the
five individual currents.
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In accordance with Ampere's Law as stated in Figure 1, the sum or

integral of all the B.dl contributions over the closed path must

be equal to the product of the net current as described above. and

the proportionality constant, po. It must be emphasized at this

point that Ampere's Law merely describes a general property of

magnetic fields as related to the currents that produce them. It

is not an "engineering formula" in which one plugs numbers in

order to extract an answer; in a sense, it describes Nature but

does not tell how to handle her, except in special, simple cases.

Now refer to Figure 5. Here is Ampere's Law once again, stated in

its most general form. Note that p is assigned a value of 4 Tr

o

(10 ) webers per ampere meter. This value matches this constant

to the mks system of units; the name given to po is "permeability

constant". Figure 5 also contains another item of importance:

since B.dl is a dot product, the magnitude of the B.dl vector at

any point in the closed path is the product of the path element dl

and the component of the i-vector parallel to the element. That is,

the magnitude of the dot product is B dl cos G.

Evaluation of the line integral of B.dl is extremely difficult

mathematically except in cases of high symmetry: you may remember

that this is also true of Gauss' Law.
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A typical case of high symmetry to which Ampere's Law may be directly
applied is that of an infinitely long, straight, current-carrying conductor.
A wire that is long compared to its diameter and for which the value of B is.
desired not too far from the wire and not too close to its ends approximates
the ideal conductor sufficiently closely. Such a wire is shown in Figure 6 & 7.

The magnetic field around a conductor with these characteristics is sym-
metrical and may be described as comprising concentric circles in a plane
at right angles to the wire. Symmetry also tells us that.the magnitude of
B is constant at all points on a given B-circle and that the B vector is
tangent to the circle wherever we choose it. Furthermore, the angle between
the line element dl and the B vector is always zero since dl is also tangent
to the circle at the selected point being superimposed on the B vector as
shown.

Using the circle shown in the diagram as the path of integration, Ampere's
Law may then be written in vector form as given in Figure 8. When trans-
lated into scalar form it takes the form shown in Figure 9 (a).

As mentioned previously, in this simple case dl and B lie along the same
straight line, that is 9.... 0, so that cos 9 = 1 and the statement may then
be written as in Figure 9(b). Also, since B is constant over the whole
closed path of integration, then the law may be further simplified as in
Figure 9(c). Finally, the line integral for a circle is simply the circum-
ference of the circle or 2nr so that the line integral of Bd1 turns out to

be nothing more than B(2nr) = poi as in Figure 9(d). Clearly, then, the
magnitude of the magnetic vector any any point on the circular line of
induction with radius r and a net current i across the area enclosed by the
line is p

o
i/2nr.

The mks unit breakdown for this example is illustrated in Figure 10. The
student should look this over carefully to be certain that he can understand
the unit relationships.

Thus, for the simple case of a long, straight, current-carrying conductor'
Ampere's Law gives a formula for determining the magnitude of the magnetic
induction at any point near the wire and not too close to its ends in
terms of the current in amperes and the distance of the point from the wire
in meters.
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AMPERE'S LAW APPLIED
TO A LONG

STRAIGHT CONDUCTOR

TERMINAL OBJECTIVES

14/3 A Describe the magnetic field around a straight-

current- carrying conductor.

14/3 F Answer questions and solve problems involving

Ampere's law and its applications.





In a previous discussion a great deal of emphasis was

placed on the fact that Ampere's Law as shown in

Figure 1 is an important generalization that relates

magnetic induction to the electric current that

produces it. More than this, it was emphasized that

Ampere's Law may be readily applied to configurations

of high symmetry but that, in most cases, evaluation

of the line integral is very difficult.

In such instances -- where the conditions of symmetry

are not met to the extent required for applying Ampere's

Law -- it is often possible to find the value of the

magnetic induction vector at a point near the conductor

by using a relationship called the Biot-Savart Law.

Although the Biot-Savart Law may be deduced from Ampere's

Law and vice versa, the proof of this is not of immediate

concern at this time.
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This discussion will concern itself with a general statement

and exposition of the Biot-Savart Law, and a description of

the procedure involved in using the law to solve a specific

problem.

Please refer now to Figure 2. An asymmetrically shaped wire

carrying a current is shown divided into tiny elements

labeled "dl". These will be referred to as "current elements".

In this way, the conductor's total current is considered to

be composed of a large number of discrete elements, the

direction of the current in a particular element being that

of the wire at that point.

If a specific current element is selected for study, one

may then consider the nature of the element of magnetic

induction dB that is produced by that current element.

With dl and P in the plane of the diagram, the direction

of the induction vector is known at point P; as given by

-Ow

the right-hand :Jule for conductors, the induction vector dB

is directed into the plane of the diagram, perpendicular

to it.

Jinr





The Biot-Savart Law is used to determine the Inier71-7mde of dB.

Figure 3 presents the Biot-Savart Law in mathematical form. The

magnitude of the magnetic induction vector-is dB at point P;
the permeability constant, i is the current in the wire, di is the
length of the current element, r is the distance from the current
element to point P, and 9 is the angle between dl and r.

The next consideration follows logically: to find the magnitude of

the induction vector at point P due to the net effect of all the di

contributions, it will be necessary to perform an integration of these

elements over the whole length of the oftWoctor,

With a comAktsair ,k_urrent it, 4 *ire of Mottlitc le meth, the integration

can be suc:Canstelly port:Waled if the Varialtion 06' 0 with respect to

each of the current elements 040) be expressed mathematically over the

length ®f the Wire.

The use of the law may be readily demonstrated for a specific example.
Please refer to Figure 5 wkieh shows g long, straight, current-carrying
wire for which the Isagmgtitt induction B at point P near the wire is to

determined. This example has been chosen so that the student may
have the opportunity to compare 11441 .got-Savan Sointion with that
obtained by using Ampere's Law in a previous case. Most textbooks
discuss this particular Biot-Savart application and the student is asked
to study the solution given in the books carefully. The approach used
here is somewhat different, however, and provides an opportunity to see

how the problem may be approached from a different starting point.

Consider the wire in Figure 5 to be infinitely long. As shown in the
diagram, 9 is the angle between dl and r while angle a is its tomple-
ment; R is the perpendicular distance between the wire and the point P.
Also, da is the angle subtended by the length of one of the current
elements. Since the wire is infinitely long, consideration of one dl
after another starting at minus infinity and going up to plus infinity
will involve letting a vary from -90 degrees to +90 degrees. Thus,

the limits of integration extend from 7/2 to +7/2.
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Figure 6 illustrates how the Biot-Savart Law may be set up in

terms of a rather than 9. Since a is the complement of 9, sin

9 is merely replaced by cos a.

To perform this integration, it is of course necessary to

express all of the quantities on the right side of the equation

in terms of only one variable. In this particular approach to

the problem, all these quantities are to be expressed in terms

of a. Referring back to Figure 5 for a moment, note that the

length of the wire 1 is related to the distance R by the

tangent of the angle a. That is, one may write 1 = R tan a

since tan a = 1/R.

Please refer now to Figure 7. Clearly, dl is needed in the

equation; hence, 1 may be differentiated with respect to a

to obtain it. This differentiation is shown in Figure 7 and

should be studied carefully before proceeding.

The next task is to set up r in terms of a. Please refer to

Figure 8. Since cos a equals R divided by r, then r = A/cos a.

To simplify the work it is better to express r in terms of the

secant of the angle as given in Figure 8.
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Figure 9 shows the step-by-step procedure used in substituting the

trigonometric relationships into the general form of the Biot-Savart

equation.

Step (a): R sec2 a da has been substituted for dl.

Step (b): R2 sec2 a has been substituted for r.

Step (c): Simplification.

Step (d): Set up to integrate between chosen limits
to find B at point P.

The integral of the cosine of an angle is the sine of the same angle.

This is one of the reasons for selecting this approach: evaluation.of

the integral is extremely simple. Now, going to Figure 10, the solution

is apparent. Please study this carefully. Note that the final expression

for B is identical with the solution obtained by directly applying Ampere's

Law to the same configuration.

The student will find that many problems can be easily solved by using

the Biot-Savart Law while these same problems would be considerably more

difficult if he attempts to apply Ampere's Law to them.

As a student, you have a significant advantage over a practising scientist.

When a scientist encounters a practical problem, he cannot at the outset

be sure that a solution for it exists, nor can he be certain that his

mathematical tools and techniques are adequate for the job. On the other

hand, the students may be quite certain that his Study Guide will not

present insoluble problems, and that patience and care, plus the basic

skills acquired by practice and study, will be enough to assure success.
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THE LAW OF
BIOTmSAVART

TERMINAL OBJECTIVES

15/1 A Derive the expression for the magnetic induction

within an ideal solenoid as (equation) is the

actural current in the solenoid wire and n is

the number of turns. (diagram)

15/1 D Use Fig. 4 as an aid in mathematically deriving

the equation for the magnetic induction at point

P; (equation).





Faraday's Law, discovered by Michael Faraday in the.l9th Century,

represents still another great generalization of physics. Its

sociological significance, too, ranks among the highest because

many aspects of our modern technological civilization would have

been greatly altered had this principle remained in obscurity.

A discussion of Faraday's Law properly requires that a few items-

of background material be briefly reviewed.

The magnetic flux $ across a surface is defined as the surface

integral of the normal component of the magnetic induction B

over the surface. Figure 1 presents the mathematical definition

of magnetic flux which is clearly the parallel of electric flux

with suitably altered symbolism. As the Figure indicates, the
*

total flux across a given area is =Jr BdA. Since this is a

dot product, the magnitude of the flux is related to the cosine

of the angle between the normal to the plane of the surface and

the actual direction of the B-lines. Referring to Figure 2, it

is seen that the flux through the area can be found by integrating

B cos 0 dA over the area under consideration. This idea should be

studied for a while before proceeding.
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The physical outcomes of Faraday's Law are best approached through

the medium of a simple experiment using the equipment and connections

shown in Figure 3. A coil of insulated wire is connected to a

sensitive galvanometer as shown. A magnet is held above the coil

preparatory to inserting it into the coil. Although a galvanometer

is a current-detector since a current must pass through its movement

if a deflection of its needle is to be obtained, it may also be used

to show the presence of an emf across its terminals. Initially,

when there is no emf, the galvanometer needle is at a center zero

position. When an emf is applied, the direction of needle deflection

serves to indicate the direction of the current and, thus, the

direction of the applied emf.

The magnetic field around a bar magnet may be visualized as lines

of magnetic induction as in Figure 4. In general, these lines can

be pictured as forming complete loops running roughly through the

north-seeking and south-seeking ends of the magnet. At any point

in the field near one of the magnetic poles, the field strength may

be judged by the density of the lines at that point. The flux

through a given area very close to the end of the magnet, for

instance, would be substantially greater than the flux further away

from the same end, through an equivalent area. This is evident

from the way in which the lines spread out at greater distances

from the end of the magnet.
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To perform the experiment, one end of the bar magnet is slowly inserted in the coil

while the galvanometer is observed. A deflection occurs, indicating the presence

of an emf across the meter terminals. This is displayed in Figure 5. In the illus-

trated example, a north-seeking or N-pole is moved downward into the coil causing

the needle to deflect to the left. After insertion, the magnet is brought to rest

inside the coil; at this time, the galvanometer reading drops back to zero. When

the magnet is slowly removed from the coil, a deflection is again observed, this

time in the.opposite direction, toward the right as shown in Figure 6.

The same experiment may be performed in a slightly different manner by moving the

coil relative to a stationary magnet starting with both at rest. When this is done --

say when the coil is moved upward with respect to the stationary N-pole inside it --

che galvanomenter again deflects. The direction of the deflection in this case is

the same as it was when the N-pole was moved upward in the previous case. In short,

it is the direction of the relative motion of the coil and magnet which appears to

be the important factor in determining the sense of the current.

In the second phase of the experiment, a comparison is made between the amount of

deflection obtained as a function of the speed of ,the motion, that is, a comparison

of the induced emf for fast relative motion and slow relative motion. It is

observed that the magnitude of the deflection increases with increasing speed

of relative motion.

The question naturally arises at this point: what interaction is taking

place? What causes the emf to be induced? Apparently relative motion of

coil and magnet results in a change in the amount of flux that 'cuts through

the conductors of the coil. Regardless of the way one performs this

experiment, it is always found that the magnitude of the emf, and hence the

magnitude of the current in the galvanometer, depends upon the time rate of

change of the flux.
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This key opposition may be dramatically demonstrated by means of another

Simple experiment as illustrated in Figure 13. A coil of many turns is

wound on a long iron core and connected to a suitable seat of emf through

a spring pushbutton. A seamless aluminum ring rests on the coil with the

core passing through it. Aluminum is used for two reasons: first, it is

not a magnetic material and displays no ferromagnetic properties, Hence,

any magnetic phenomena we might observe in connection with the ring cannot

be blamed on its material. Second, aluminum has a very low electrical

resistance so that even a small emf induced in the ring can cause a large

current around its circumference. When the switch is closed (pushbutton

depressed), an increasing flux builds up in and around the core causing

tha flux cutting through the aluminum ring to undergo a very rapid time

rate of change, Although the flux build-up is not instantaneous, it does

occur so swiftly that dy/dt assumes an enormous value. The induced emf

is correspondingly great and because the resistance of aluminum is so

small, the induced current is immense. Thus, the newly induced magnetic

field around the ring is very, very large.

This tremendous induced field must oppose the causative field; the

repulsive force thereby developed must therefore be relatively great.

The result is that the ring is thrust upward and away from the coil so that

it flies away from the system straight up into the air. When done properly,

this experiment is quite spectacular. The ring can be made to fly upward

with enough initial velocity to strike the ceiling of the room with a

resounding thwack.
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Thus, an emf induced in a conductor as L result of relative motion of the

conductor in a magnetic field has a mF nitude that depends on d$ /dt as

shown in Figure 7. This relationship is given as a proportion, that is, the

induced emf symbolized by the script "E" is proportional to the time rate of

change of the magnetic flux, d$ /dt.

It is now possible to develop a logical scheme for determining the direction

of the induced emf when other necessary things are known. Here again, a -

sensible approach is to study a specific case and then apply what is learned

about this specific case to a valid generalization.

Figure 8 shows a metallic loop of fixed area; a galvanometer or some other

indicator of induced emf is imagined to be connected to the ends of the loop.

The loop is next moved toward an N-pole of a bar magnet as in Figure 9. As

the relative motion proceeds, the flux through the lcop increases since it

ssssmoves through a region of greater flux density a it approaches more closely

to the magnetic pole. As was previously shown, a c ange of flux results in

an induced emf which in turn causes a current in the closed circuit of the

loop and galvanometer. It is necessary now to determine whether or not the

direction of this induced emf can be predicted from an analysis of all the

other relevant factors. There are only two possibilities, both of which

are illustrated in Figure 10: the direction of the induced current will be

either clockwise as in Figure 10A or counterclockwise as in B. The fact

that there is a current in the loop, regardless of its direction, means

that a new magnetic field has come into existence " the field produced

by this current. Its direction is easily established by using the right-hand

rule: grasp the loop with the fingers of the right hand encircling the loop

in the direction of the current; the extended thumb will then point in the

direction of the magnetic field.
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Consider case A first. The right hand rule shows that the field due to

the induced current will thread through the loop from right to left as

in Figure 11. In case B, the same rule gives the direction of the field

from left to right.

Figure 12 has superimposed the two previous diagrams on one another so

t tt the combined effects become visible. In each diagram, one field

originates at the external bar magnet's pole while the other arises from

the current induced. in the loop. In case A, both the applied and induced

fields have the same direction -- from right to left. Note the funda

mental impossibility this implies. Increasing flux leads to increasing

induced current which leads to increasing induced field which leads to

increasing flux which leads to increasing induced current and so on

This endless chain suggests the possibility of infinite induced currents

and infinite fields, absurdities, of course. It is a flat contradiction

of the principle of conservation of energy. For this reason alone,

Case A must be discarded as a natural impossibility,

On the other hand, case B is quite possible because the applied and

induced fields are oppositely directed. Since they oppose one another,

there is no implicit nor explicit violation of the conservation principle.

Case B must, therefore, show the situation as it must exist in nature.

With opposing fields taken as being the true nature of things, it is then

clear that the induced emf is not only proportional to dd /dt but also that

it is equal to the negative of d$ /dt. This may be stated as follows: the

direction of the induced emf must be such as to produce a current whose

magnetic field opposes the change of flux which initially induced the emf,
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The descriptive aspect of Faraday's Law involving the

direction of the induced emf (and current) is generally

known as Lenz's Law. This is indicated in the summary

presented in Figure 15. In studying the s'L.mmary,

please note that the two laws are very intimately

related -- one is quite valueless without the other.
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The direction of an induced
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the change of flux causing it.
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FARADAY'S LAW
OF INDUCTION

TERMINAL OBJECTIVES

15/3 A Trace the development of Farallay's Law of

electromagnetic induction throu6i an analysis

of his basic experiments.

15/3 D Apply Lenz's Law to determine the direction of induced

emf's in various induction situations.
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The beginning of the twentieth century witnessed a number

of important experiments which marked the inception of

modern physics. Not the least among thesa were the bril-

liant investigations into the nature and characteristics

of the electron performed by the English scientist, Sir

Joseph John Thomson. By studying the effect of, combined

electric and magnetic fields on moving electrons, Thomson

determined for the first time the charge -to -mass. ratio

(e/m) of the electron. The apparatus described in this

text resembles Thomson's equipment very closely; the

cathode-ray tube used in a prior discussion ("Deflection

of Electrons in an Electric Field") is to be applied again,

this time to an analysis of the motion of an electron beam

in a combined electric and magnetic field.



(Figure 1) The cathode-ray tube shown in this drawing

has been previously presented but a brief review would

not be out of place here. Electrons sprayed from the

hot cathode are focused by the cylinder surrounding the

heater-cathode assembly and accelerated by the anode

adjacent to it. The electrons pass in the form of a

beam through the small opening in the anode and prisA:eed

in a collimated pencil to the fluorescent screen at the

end of the tube. The fluorescent spot marks the terminus

of the beam at the screen. If there is no difference of

potential between the parallel plates in the path of the

beam, the electrons pass through without deviation. When

a potential difference is present, however, the beam is

deviated to an extent determined by the magnitude of the

voltage and the geometry of the tube: the direction of

the deviation, that is to the left or to the right, is

governed by the direction of the electric field set up

by the potential difference between the plates.
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(Figure 2) This is a top plan view of the edges of the

deflecting plates. With the polarity of potential

difference as shown -- the right-hand plate positive

(viewed from the observer's position facing the screen)

and the left-hand plate negative -- the electron beam is

deflected toward the right. It must be remembered that

the beam consists of negatively charged particles, hence

the force acting will be in a direction opposite that of

the field. The field is directed toward the left, the

electrons are deflected toward the right.
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(Figure 3) Electrons are also deflected when they pass

through a magnetic field privided that some component of

the electron velocity is perpendicular to the field. In

this drawing a positive particle q is shown moving upward

with velocity v at right angles to a field directed from

right to left, B. The right-hand Palm Rule indicates

that the force exper ced by q is directed toward the

observer as shown, and is perpendicular to the plane

containing i and v. The equation in the figure also gives

the vector equation for the force: it shows that the

force is a cross-product in which v is rotated into B.

This is the relationship of particle velocity, B-field

direction, and force for a positive particle. The change

required in the relationship when the particle is negative

is shown in Figure 4.
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(Figure 4) For a negative particle like an electron,

the force F is still a cross-product in which v is

rotatet: Stu B, but this time it is multiplied by

negative the charge on the electron. Thus, the

force is 180 0 from the direction it had when the

particle was positive. The same result is obtained

when the left-hand Palm Rule is used. Note, however,

that the force remains perpendicular to the plane

containing v and B.
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(Figure 5) In the equipment under discussion, the B-field

is developed by a current-carrying coil placed above the

tube in line with the deflection plates. In this case, the

current direction is chosen so that the B-field is directed

downward. The student should now apply the left-hand Palm

Rule to verify the direction of the force on the electron

beam as it is given in the drawing: fingers of the left

hand pointing downward, extended thumb in the direction, of

the velocity v, force toward the left as viewed by an

observer standing in front of the screen. Note that things

have been arranged so that the B-field gives rise to a

deflection in a direction opposite that of the B-field

discussed before: left for the B-field, right for the E-field.

The extent to which the beam is deflected is readily con-

trolled by the operator by suitably changing the electrical

values. The B-field magnitude may be altered by changing

the current in the coil and the E-field may also be varied

by changing the potential difference across the deflection

plates.
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(Figure 6) This is a diagram of the front screen and the

fluorescent spots in positions obtained for special.elec-

trical conditions. On the left is the spot position for

a specific B-field in which the force acting on the beam

is F
B

= evB. On the right is the spot position for

specific electric field which exerts a force FE = eE. In

the center is the spot position when FB is equal to FE,

both forces acting for the same length of time on the beam.

Stated otherwise, the beam is undeflected when FB = FE

over the same time interval of action. Thus, a properly

selected B-field can nullify the deflection caused by a

given E-field, or vice versa. In actual practice, the

E-field potential is selected to produce a deflection of

a few centimeters and then the current in the coil is

adjusted until the spot returns to its undeviated position.

For this balanced condition, the forces may be equated.

The student is asked to set the equivalents of F
B

and F
E

equal to one another and then solve for v, the velocity

of the electron beam. This should be done before turning

to the next page.
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(Figure 7) The solution is shown here. It is seen that

the beam velocity may be calculated very simply from the

ratio of E to B. This provides an easy method for

measuring the velocity of the beam since both .E and B

are readily measurable individually. With the velocity

known, calculation of e/m then becomes a matter of

applying straightforward, elementary mechanics to the

geometry of the tube. Various approaches may be used,

all of them depending on the assumption that the beam

velocity can be measured. Many of these procedures

are fully described in elementary college textbooks.
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MOTION OF AN
ELECTRON IN
COMBINED E
AND B FIELDS

TERMINAL OBJECTIVES

10/3 B Answer questions and solve problems relating to

potential field strength.

14/1 B Answer qualitative questions relating to the magnetic

induction vector B .
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L-R TRANSIENTS

A transient electric current is a current of temporary nature

which appears in conductors as a result of the transfer of stored energy

somewhere in the circuit. In the study of transients in circuits con-

taining resistance and capacitance, it was shown that such energy trans-

fers cannot occur instantaneously. A specific time is required for a

transient current to grow or decay. It was further demonstrated that

the delay time in either case is a function of the magnitudes of -the cir-

cuit constants and that growth and decay times can be calculated by

applying the relevant mathematical relationships.

Circuits containing inductance L, resistance R, and a seat

of emf E also display delay phenomena. Just as an RC circuit has a

time constant, a circuit containing L and R may be shown to have a sim-

ilar characteristic which governs the time required for a current in

it to grow tosome desired value, or to decay from some initial value

to some other lower one.

This paper deals with the development of the relationships

relevant to the growth and decay of transient currents in L-A circuits.



Figure 1: This is a schematic diagram of a common laboratory set up
designed to show that L-R transients do indeed exist. The coil must
be a large one containing many turns of relatively heavy wire. The
switch S

1, the light bulb on the left, the switch S2, and the entire
coil are all connected in series. The light bulb at the left is con-
nected across part of the coil.

When both switches are closed simultaneously, both lamps
light but the growth of the current is substantially slower than it
would be if the lamps had been connected directly to the 100-volt
DC generator. The delay effect is readily observable, particularly
if the coil is properly wound. As in RC circuits, the delay pheno-
menon is explained in terms of energy transfer: the current from the
generator gives rise to the growth of a magnetic field in and around
the coil. The electrical energy is converted into energy stored in
the magnetic field and, since energy cannot be transferred instant-
aneously, a finite time is required for the current to grow from its
initial to its final magnitude. Essentially, the inductance of the
coil impedes the growth of the current in the circuit.

Assuming that both switches have been closed for an inter-
val long enough to allow the current to reach some maximum value, the
effect of opening switch S2 is then observed. Two things are then seen tooccur: as the switch opens, a violent electrical arc appears across
it, vanishing only after the switch has been opened all the way;
secondly, the right -hand lamp flashes on so brightly that it may very
well be destroyed-. From the circuit point of view, opening switch S2
disconnects the voltage source from the circuit, allowing whateverenergy that has been stored in the inductor to dissipate itself in theform of a current in the right-hand lamp. Just before S2 is opened,
a. strong magnetic field is present in the coil; when the voltage source
which maintains this field is disconnected, the field collapses and in-
duces an emf in the coil itself. The current resulting from this in-duces emf has only one path to take --- through the associated lightbulb. Since the stored energy cannot be transferred instantaneously,the effect is that the coil tends to keep the current flowing for a
considerable time after the switch has been opened. The current main-tained by the collapsing field when the switch is opened is an L-R
transient which may give rise to potential differences that are very
much greater than the source voltage. It is often more dangerous toturn off the current in a coil than it is to turn it on!
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Figure 2: The method used to analyze L-R transients is similar to the

one employed in the study of RC circuits. To begin the analysis, con-

sider that the switch S in the circuit shown here is open and that a

current i has been established in the resistance and the coil. The

switch is then closed, short-circuiting the source of emf. (This is

never done in practice because it would damage both the source and the

switch. The circuit is drawn this way to avoid unnecessary complexities).

As the magnetic field in the coil collapses, it induces a transient cur-

rent around the closed loop containing the switch, the resistance, and

the coil. The duration of the transient current depends on the circuit

constants as has already been mentioned, but its instantaneous value i

may be used in setting up a Kirchhoff,loop equation.
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Figure 3: The first expression is the required loop equation. The

first term, Ri, is the voltage drop in the resistance due to the presence

of the instantaneous current i. The second term in this equation is

the voltage induced across the coil as the magnetic field collapses, that

is, the inductance multiplied by the rate of change of the current di/dt.

Since this traversal completes the loop, the sum of these voltage drops

is set equal to zero as indicated.

The second equation chows a rearrangement:le:terms In;Which ffd

has been shifted to tht right Side and has had its sin changed:.

The third expression is a second rearrangement of terms to

growl:Sim variables together in preparation for the required integration.
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i:-.4ure 4: The final exptession obtained in the previous figure is

repeated at the top of this group. Taking indefinite integrals yields

the second equation of this group. It should be remembered that the

constant of integration may be expressed in any form desired; in this

case, the subsequent steps are facilitated by using the logarithm to

the be e of a constant number, "ln constant".

Antilogs are then taken to establish.the third equation of

the group in which theinstannameous current i appears to be equal to

somecommmamma=multiplied by.e rafted to the -Rt/L power. 1Nu find the

value of thmtnnnstant, the time is set equal to zero so that the

entire exponent becomes zero. e° = 1e so that the constant must

be equal to the instantaneous current at zero time, that is.. at the in-

stant of arming the switch. This permits us to write the final ex-

pression of the-group showing that the instantaneous current i at any

time t is a. function of the initial current, the resistance 712, and the

inductancm 1..

Aat this point, in preparation for the next step, it would be

helpful:rot:review one small aspect of the RC time constant briefly.
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Figure 5: The first expression shown here is the exponent of e in the

RC transient equation. Note that t is in the numerator and is Isolated

from the other circuit quantities which appear in the denominator. In

this form, the product RC serves a very useful purpose asrthe time-constant,

a quantity of significance in circuit design.

As it turns out, it is advantageous to modify ths.exponent of

e in the L-R expression swat it, too, contains only the-E.:factor t in

the numerator with, the L amnER factors in the denominator.-- -This: mod-

ification is shown in themancond equation of the group.

When set up in form, L/R has an analogous significance

as the time-constant of L54siocuits. It may be readily shown that L/R

has the dimension of timeiy be expressed in seconds. This is

left as an exercise for them:Indent. (Hint: set up a 'ratio of the henry

to the ohm, convert thesenmmr:s to their fundamental forms, then solve).
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Figure 6: To recapitulate, the expression obtained for the der,,

current in an L-R circuit is:

i = i e-Rt/L
0

-t /L
OR i = e

The analysis:of current growth in an L-R circuit is handled in much the

sass-An:inner. With the source of emf connected to the series arrangement

of I-and_R, the current starts at zero and begins to increase as it builds

up themsagnetic field in the coil- The Kirchhoff loop equation for the

instantaneous current i at any time t is given by the first expression

in this stoup where E is the source emf. Since 'this development is quite

similar in concept .to the one discussed in R-C TRANSIENTS, it will be

left as: an Important and valUable exercise for the individual student.

Fill in the intermediate steps between the first and second expressions

shown here:and note that L/R is once again the time-constant of the circuit.

The final equation shows that the instantaneous current i

after an interval of current growth t is equal to ie., multiplied by

( 1--e7Rt/L) 'Theterm ic.,is the current that would appear in the

circuit after an infinitely long interval of current growth.
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Figure 7: Here is a summary of thellimmdnum discussion. A great deal

can be learned about the significance'ofltheme equations by substituting

various values for t, R, and L and notithicour:the instantaneous current

changes. For example, determine the fracttrar.of the initial current

in the decay equation that would be - prewar tn the circuit after an in-

terval of one time-constant period, thatAm,mbere t = R/L. Test the

equations for t = 0 and t = infinity.

Bear in mind that i
o

in the decay equation is the initial

current before decay starts and that Itiods-given by E /R.

Note, too, that 40isthecarrent-that would be present in

the circuit after an infinite growth time. This value of the current

is also given by E/R.
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TRANSIENTS

TERMINAL OBJECTIVES

15.03 124 00 analyze the general RL current growth equation
qualitatively and quantitatively.

15 03 126 00 analyze the general RL current decay equation
qualitatively'and quantitatively.
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R-C TRANSIENTS

The word "transient" as it is used in physics implies something temporary

just as it does in ordinary English. A transient in a hotel, for example,

is a temporary resident, one who rents a room for a day or two. In phys-

ics, the term implies a lack of permanency or a condition which is the

opposite of a "steady state". A transient current in an electrical cir-

cuit is a current that arises because of a potential difference between

two points of a conductor but lasts for a relatively short time. A

transient electric current is readily demonstrated with the simple equip-

ment shown in Figure 1.



Figure 1: This is a schematic diagram of a circuit containing a seat

of emf (a battery), an ordinary incandescent lamp, a single-pole double

throw switch, and a capacitor. With the capacitor initially uncharged

and the switch in the lower position, the capacitor circuit is open and

there is no current. When the switch is moved to the upper position,

the circuit is complete so that the battery begins to charge the capac-

itor and current appears in the conductors. As the capacitor charges

and the potential difference across its terminals increases, the cur-

rent in the circuit gradually decreases because the polarity of the

capacitor voltage is in opposition to that of the battery. After a

time, no further current can be detected -- it has died out. Thus,

this is a transient current which persists only as long as the capac-

tor has not charged to its maximum voltage. The action is made vis-

ible by the incandescent lamp. When the switch is first moved up, the

lamp flashes on brightly but then begins to dim as the transient current

starts to die out. The time required for the decay of the transient

current is equivalent to the charging time of the capacitor. Energy

cannot be instantaneously transferred from source to receiver in any

natural phenomenon; in this case, a capacitor cannot change its state

of cha00000- direction instantaneously When the switch is moved

down, the lamp 'gain flashes on, remains on for approximately the same

time as before, and then goes out. Once more, a definite time is needed

for the capacitor to transfer its stored energy to the light bulb.
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t,,Ire 2: Looking into this analytically, it is assumed at the s

the capacitor has been fully charged and that the switch has .yra3=-

1-1 moved to its lower position, starting the discharge process.

instant, the Kirchhoff loop equation can be written as shown home_

arcing at the top plate of the capacitor and going around the loop

a counterclockwise direction, the first component encountered is

=,v lamp of resistance R carrying an instantaneous current i so that

moo-voltage drop across it is Ri. The capacitor is next in line in

MUtraversal of the loop; here is found a potential difference doe

the charge on the capacitor. The voltage is, of course, given by

zAhe ratio of charge to capacitance or q/C. Back at the starting patnt

stir he loop, the voltage is equal to the initial value at the beginsinft

If the traverse so that the sum of the two voltage drops must equal raw

416 indicated in the first equation.

In the second equation, dq/dt has been substituted for the

instantaneous current i.

Transposing terms yields the third equation. This may be

read verbally as: the rate of change of charge of the capacitor at any

instant is numerically equal to the initial charge a. on the capacitor

divided by the product of the resistance in the circuit and the capac-

itance of the capacitor. This product RC is known as the timet,camatemi=

Olen ccircuit. Its significance will be demonstrats0 ihortlo.
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Figure 3: This differeostial equation Isemost difficoat ite.stedme. The

terms of the first equaled= are resarrarged as shown -tam ahreadm dite second.

The irolefinite irtegral of earn side is then =dem to obtain

the thirthempeation. That is, the intoroma.1 of dq/dt sloody Sar 1,

and the ate innagral of -dt/RC fis -tiRC plus or.onsoant. Since

the coafasantaliq be chosen in any fon* desired, it is hasterr in this

case to write =It as the logarithm of 4. constant, or lu (roost).

Figure tr:: The Inert :weep Involves taiithag:. the antilog of thea ,excores s ion

developed p 13 ously,,:hereshown as that:upper equation. When this is

done, the second equation is obtained.. Niu determine: the =hoe of the

constant, t inset eqoal, to zero so that: the entire ezponehhial term
becomes :zero. This mmanszthat, for this assumption, .e :becomes unity.

Hence, when t 0, theism:al.:mum is egad to the initial change qo and

the expressilcm takesforio- shown in the lowermost equation.
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in q = ±Ci constant

q = c o e-tiRc

go = cornitant

= qo



Figazee 51- Roma tihe dimensional poem: of view, if Might Eate_te of the

f: trot lexpagemozon arbown here ism.-imam the same unit=r-as eat _iinfm side,

the nom e-tlar oast be dimensioneeso. It follows, tizterefo, mat

the product Re_umait have the same:,-dimension as t, that 1L4 it Iliffitat be

expressecL...in time units. Ist is not difficult to show hat this is
indeed :trace: RC is measured in atecovais and provides an: indicatztcm of

the rate Tat which the transtierm:!,=aairrentr decay of the diochar.ging

capacitormccurs. Essentially. rids iss :the reason for leeterriarg to

RC as the time constant of the_n=ilmin lilt. If this productl.isnaade larger

by increasing either the resistamo. the -capacitance, Aar-both, the

decay-time increases correspontditucly- Amaaccordance with imhe relation-

ship shown:. here. It should also be noted that, imorider-fotaa:;.capaci-

tor to diocharge fully actsailay tto zero -- the Vasa constamatmust

theoreticailly, at least, be tOrr+nisew-. lo :practice. -itiawever.,,,dozoapacitor

is considiezed to be fully dilltdiargd It an: efratUn e offilae
tine-constant periods. For -4011Minp1e s ,;circuttr conamalning azIcapoti-

tan= foi: 1..31aricrofarad. and :a:7resismaturze-of 1.0:_omennin.. 'diet 'tteee, -toast ant.

is 1 locanal.. When -sucia a caparidaor ism a illowed.tranaltsnaarrge frorzfranne

inittiad..wailae rim a period of .5...frE.!seiteadia, theacaoss

temminalla So titan: taken. Ito be_-- meow; at :is then ttcrinwe

Alserhargediliony.



RC

PC = constant



agumme 6: The relationship for ahe charging transient is obtained in

a tainamasr manner elrhough the development is somewhat more complicated.

'To maid .unoecesaery mathematical complexities, an indication of the

malthodi of o Oil g the equation for charge will he presented rather

dean :a rigorous ,deriv

The switch is moved to the upper position to start the charg-

ing prowess, assuming that the Cfapaaim or has been previously fully dis-

c.hanged. The first agouti= Meow the Kirchhoff Loop relationship for

this situation., The addition me the seat of emf mandates the inclusion

of the "E" term an the right able..

7-igoree "3: This equation tat lies sniffed by finding the tcomplementary

-fussztizan and adding to it= the tilatermal in which we are interested. It
:has almmuudy been shown that than:collation takes the form:

qt (comsat) e-tigIC

111* eaaatant is then added to o the third equation shown here.

If thilk*equation is suhsti.tuteditiback into the first., it is .readily
A V M r t etedhltuisly,, thmussmartk Itbat the last 'equattout of this

'gift* MAN* VIMittit. .iltoiletit .urged to analyze tikmis development

tialsoagithy for himself.
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Figure 8: Here is a summary of the two equations for transients that

have been developed:

DISCHARGE: A capacitor has been charged to its maximum value,

go. This is its initial charge. The equation then states that the

instantaneous charge s. remaining on the capacitor at any time t after

discharge has begun is given by the right-hand term.

CHARGE: A capacitor has been fully discharged. A seat of

emf is then connected to it through a resistance. Then, the instant-

aneous charge a after a charging time t is related to the charge the

capacitor would have assumed if allowed to charge for an infinite time

is given by the right-hand term.

Thus, in the discharging phenomenon, qo is the initial full

charge or maximum charge that can be taken on given enough time. In

the charging phenomenon, goois the charge the capacitor would have

assumed had it been given infinite time to do so. In either case,

qo or q can be replaced by EC as shown in the last statement.



DISCHARGE:

qo e -tiRc

CHARGING:
q

qo aelM111101.

( _e -t/Rc)

goo = EC

FIGURE



Figure 9: A widely-used application of the R-C transient effect is
shown schematically in this diagram. A source of direct current such
as a battery is connected across a capacitor and a gas-filled tube
such as a neon or argon lamp through a series resistor. The observed
effect when this circuit is in operation is a periodic flashing of
the lamp.

The explanation is best started by considering the instant at which
the capacitor is fully discharged, the voltage across the neon lamp
is zero, and the lamp is unlit. As the battery begins to charge the,
capacitor due to the transient current, the voltage across the lamp
and capacitor starts to rise at a rate determined by the time constant
RC. The exponential increase of voltage is illustrated in the graph.

A gas-filled glow tube is characterized by the fact that no light is
visible when the potential difference between its terminals is below
the required "breakdown" or ionization voltage. For a standard night-
light type of lamp, this is approximately 60 volts. Thus, no effect
is observed during the charging process until the voltage across the
parallel combination grows to 60 volts. When this does occur, the
gas ionizes and glows brightly. Simultaneously, the internal resis-
tance of the lamp drops to a very low value. Since the lamp is con-
nected directly across the capacitor, the latter is discharged very
quickly by the conductive gas causing the voltage across the capaci-
tor to drop correspondingly. At about 55 volts, the gas in the lamp
deionizes and the lamp extinguishes. Its resistance again rises
to its initial high value. Thus, the capacitor once more starts to
charge until it again reaches the ionization potential of the lamp
and the process repeats. The repetition rate of the flashing light
is clearly governed by the time required for the voltage across the
capacitor to build up from the deionization potential to the ioniz-
ation potential. For a given lamp, the difference between these two
potentials is nearly constant, hence the frequency of the flashes
is governed by the RC time constant of the circuit. Altering R or
C or both will therefore result'in a changed frequency; increasing
the RC product increases the period and decreases the repetition
rate of the flashes,.-and-vTe'a versa.
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TRANSIENTS

TERMINAL OBJECTIVES

15 02 121 00

15 02 123 00

analyze the general RC circuit charging equation
qualitatively and quantitatively.

analyze the general RC circuit discharge equation
qualitatively and quantitatively.


